@inproceedings{hardt-rambow-2017-predicting,
title = "Predicting User Views in Online News",
author = "Hardt, Daniel and
Rambow, Owen",
editor = "Popescu, Octavian and
Strapparava, Carlo",
booktitle = "Proceedings of the 2017 {EMNLP} Workshop: Natural Language Processing meets Journalism",
month = sep,
year = "2017",
address = "Copenhagen, Denmark",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/W17-4202/",
doi = "10.18653/v1/W17-4202",
pages = "7--12",
abstract = "We analyze user viewing behavior on an online news site. We collect data from 64,000 news articles, and use text features to predict frequency of user views. We compare predictiveness of the headline and {\textquotedblleft}teaser{\textquotedblright} (viewed before clicking) and the body (viewed after clicking). Both are predictive of clicking behavior, with the full article text being most predictive."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="hardt-rambow-2017-predicting">
<titleInfo>
<title>Predicting User Views in Online News</title>
</titleInfo>
<name type="personal">
<namePart type="given">Daniel</namePart>
<namePart type="family">Hardt</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Owen</namePart>
<namePart type="family">Rambow</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2017-09</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2017 EMNLP Workshop: Natural Language Processing meets Journalism</title>
</titleInfo>
<name type="personal">
<namePart type="given">Octavian</namePart>
<namePart type="family">Popescu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Carlo</namePart>
<namePart type="family">Strapparava</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Copenhagen, Denmark</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We analyze user viewing behavior on an online news site. We collect data from 64,000 news articles, and use text features to predict frequency of user views. We compare predictiveness of the headline and “teaser” (viewed before clicking) and the body (viewed after clicking). Both are predictive of clicking behavior, with the full article text being most predictive.</abstract>
<identifier type="citekey">hardt-rambow-2017-predicting</identifier>
<identifier type="doi">10.18653/v1/W17-4202</identifier>
<location>
<url>https://aclanthology.org/W17-4202/</url>
</location>
<part>
<date>2017-09</date>
<extent unit="page">
<start>7</start>
<end>12</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Predicting User Views in Online News
%A Hardt, Daniel
%A Rambow, Owen
%Y Popescu, Octavian
%Y Strapparava, Carlo
%S Proceedings of the 2017 EMNLP Workshop: Natural Language Processing meets Journalism
%D 2017
%8 September
%I Association for Computational Linguistics
%C Copenhagen, Denmark
%F hardt-rambow-2017-predicting
%X We analyze user viewing behavior on an online news site. We collect data from 64,000 news articles, and use text features to predict frequency of user views. We compare predictiveness of the headline and “teaser” (viewed before clicking) and the body (viewed after clicking). Both are predictive of clicking behavior, with the full article text being most predictive.
%R 10.18653/v1/W17-4202
%U https://aclanthology.org/W17-4202/
%U https://doi.org/10.18653/v1/W17-4202
%P 7-12
Markdown (Informal)
[Predicting User Views in Online News](https://aclanthology.org/W17-4202/) (Hardt & Rambow, 2017)
ACL
- Daniel Hardt and Owen Rambow. 2017. Predicting User Views in Online News. In Proceedings of the 2017 EMNLP Workshop: Natural Language Processing meets Journalism, pages 7–12, Copenhagen, Denmark. Association for Computational Linguistics.