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Abstract

Experimenting with a dataset of approxi-
mately 1.6M user comments from a Greek
news sports portal, we explore how a state
of the art RNN-based moderation method
can be improved by adding user embed-
dings, user type embeddings, user biases,
or user type biases. We observe improve-
ments in all cases, with user embeddings
leading to the biggest performance gains.

1 Introduction

News portals often allow their readers to comment
on articles, in order to get feedback, engage their
readers, and build customer loyalty. User com-
ments, however, can also be abusive (e.g., bully-
ing, profanity, hate speech), damaging the reputa-
tion of news portals, making them liable to fines
(e.g., when hosting comments encouraging illegal
actions), and putting off readers. Large news por-
tals often employ moderators, who are frequently
overwhelmed by the volume and abusiveness of
comments.1 Readers are disappointed when non-
abusive comments do not appear quickly online
because of moderation delays. Smaller news por-
tals may be unable to employ moderators, and
some are forced to shut down their comments.2

In previous work (Pavlopoulos et al., 2017a),
we introduced a new dataset of approx. 1.6M
manually moderated user comments from a Greek
sports news portal, called Gazzetta, which we
made publicly available.3 Experimenting on that
dataset and the datasets of Wulczyn et al. (2017),
which contain moderated English Wikipedia com-
ments, we showed that a method based on a Recur-
rent Neural Network (RNN) outperforms DETOX

1See, for example, https://goo.gl/WTQyio.
2See https://goo.gl/2eKdeE.
3The portal is http://www.gazzetta.gr/. In-

structions to download the dataset will become available at
http://nlp.cs.aueb.gr/software.html.

(Wulczyn et al., 2017), the previous state of the art
in automatic user content moderation.4 Our pre-
vious work, however, considered only the texts of
the comments, ignoring user-specific information
(e.g., number of previously accepted or rejected
comments of each user). Here we add user embed-
dings or user type embeddings to our RNN-based
method, i.e., dense vectors that represent individ-
ual users or user types, similarly to word embed-
dings that represent words (Mikolov et al., 2013;
Pennington et al., 2014). Experiments on Gazzetta
comments show that both user embeddings and
user type embeddings improve the performance
of our RNN-based method, with user embeddings
helping more. User-specific or user-type-specific
scalar biases also help to a lesser extent.

2 Dataset

We first discuss the dataset we used, to help
acquaint the reader with the problem. The
dataset contains Greek comments from Gazzetta
(Pavlopoulos et al., 2017a). There are approxi-
mately 1.45M training comments (covering Jan. 1,
2015 to Oct. 6, 2016); we call them G-TRAIN (Ta-
ble 1). An additional set of 60,900 comments (Oct.
7 to Nov. 11, 2016) was split to development set
(G-DEV, 29,700 comments) and test set (G-TEST,
29,700).5 Each comment has a gold label (‘ac-
cept’, ‘reject’). The user ID of the author of each
comment is also available, but user IDs were not
used in our previous work.

When experimenting with user type embed-
dings or biases, we group the users into the fol-

4Two of the co-authors of Wulczyn et al. (2017) are with
Jigsaw, who recently announced Perspective, a system to de-
tect toxic comments. Perspective is not the same as DETOX
(personal communication), but we were unable to obtain sci-
entific articles describing it.

5The remaining 1,500 comments are not used here.
Smaller subsets of G-TRAIN and G-TEST are also available
(Pavlopoulos et al., 2017a), but are not used in this paper.
The Wikipedia comment datasets of Wulczyn et al. (2017)
cannot be used here, because they do not provide user IDs.
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Dataset/Split Gold Label Comments Per User Type TotalAccepted Rejected Green Yellow Red Unknown
G-TRAIN 960,378 (66%) 489,222 (34%) 724,247 (50%) 585,622 (40%) 43,702 (3%) 96,029 (7%) 1.45M

G-DEV 20,236 (68%) 9,464 (32%) 14,378 (48%) 10,964 (37%) 546 (2%) 3,812 (13%) 29,700
G-TEST 20,064 (68%) 9,636 (32%) 14,559 (49%) 10,681 (36%) 621 (2%) 3,839 (13%) 29,700

Table 1: Comment statistics of the dataset used.

Dataset/Split Individual Users Per User Type TotalGreen Yellow Red Unknown
G-TRAIN 4,451 3,472 251 21,865→ 1 8,175

G-DEV 1,631 1,218 64 1,281→ 1 2,914
G-TEST 1,654 1,203 67 1,254→ 1 2,925

Table 2: User statistics of the dataset used.

lowing types. T (u) is the number of training com-
ments posted by user (ID) u. R(u) is the ratio of
training comments posted by u that were rejected.

Red: Users with T (u) > 10 and R(u) ≥ 0.66.
Yellow: T (u) > 10 and 0.33 < R(u) < 0.66.
Green: T (u) > 10 and R(u) ≤ 0.33.
Unknown: Users with T (u) ≤ 10.

Table 2 shows the number of users per type.

3 Methods

RNN: This is the RNN-based method of our previ-
ous work (Pavlopoulos et al., 2017a). It is a chain
of GRU cells (Cho et al., 2014) that transforms the
tokens w1 . . . , wk of each comment to the hid-
den states h1 . . . , hk (hi ∈ Rm). Once hk has
been computed, a logistic regression (LR) layer es-
timates the probability that comment c should be
rejected:

PRNN(reject|c) = σ(Wphk + b) (1)

σ is the sigmoid function, Wp ∈ R1×m, b ∈ R.6

ueRNN: This is the RNN-based method with user
embeddings added. Each user u of the training set
with T (u) > 10 is mapped to a user-specific em-
bedding vu ∈ Rd. Users with T (u) ≤ 10 are
mapped to a single ‘unknown’ user embedding.
The LR layer is modified as follows; vu is the em-
bedding of the author of c; and Wv ∈ R1×d.

PueRNN(reject|c) = σ(Wphk + Wvvu + b) (2)

teRNN: This is the RNN-based method with user
type embeddings added. Each user type t is
mapped to a user type embedding vt ∈ Rd. The

6In our previous work (Pavlopoulos et al., 2017a), we also
considered a variant of RNN, called a-RNN, with an attention
mechanism. We do not consider a-RNN here to save space.

LR layer is modified as follows, where vt is the
embedding of the type of the author of c.

PteRNN(reject|c) = σ(Wphk + Wvvt + b) (3)

ubRNN: This is the RNN-based method with user
biases added. Each user u of the training set with
T (u) > 10 is mapped to a user-specific bias bu ∈
R. Users with T (u) ≤ 10 are mapped to a single
‘unknown’ user bias. The LR layer is modified as
follows, where bu is the bias of the author of c.

PubRNN(reject|c) = σ(Wphk + bu) (4)

We expected ubRNN to learn higher (or lower) bu

biases for users whose posts were frequently re-
jected (accepted) in the training data, biasing the
system towards rejecting (accepting) their posts.
tbRNN: This is the RNN-based method with user
type biases. Each user type t is mapped to a user
type bias bt ∈ R. The LR layer is modified as
follows; bt is the bias of the type of the author.

PtbRNN(reject|c) = σ(Wphk + bt) (5)

We expected tbRNN to learn a higher bt for the red
user type (frequently rejected), and a lower bt for
the green user type (frequently accepted), with the
biases of the other two types in between.

In all methods above, we use 300-dimensional
word embeddings, user and user type embeddings
with d = 300 dimensions, and m = 128 hidden
units in the GRU cells, as in our previous experi-
ments (Pavlopoulos et al., 2017a), where we tuned
all hyper-parameters on 2% held-out training com-
ments. Early stopping evaluates on the same held-
out subset. User and user type embeddings are
randomly initialized and updated by backpropa-
gation. Word embeddings are initialized to the
WORD2VEC embeddings of our previous work
(Pavlopoulos et al., 2017a), which were pretrained
on 5.2M Gazzetta comments. Out of vocabulary
words, meaning words not encountered or encoun-
tered only once in the training set and/or words
with no initial embeddings, are mapped (during
both training and testing) to a single randomly ini-
tialized word embedding, updated by backpropa-
gation. We use Glorot initialization (Glorot and
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System G-DEV G-TEST
ueRNN 80.68 (±0.11) 80.71 (±0.13)
ubRNN 80.54 (±0.09) 80.53 (±0.08)
teRNN 80.37 (±0.05) 80.41 (±0.09)
tbRNN 80.33 (±0.12) 80.32 (±0.05)

RNN 79.40 (±0.08) 79.24 (±0.05)
uBASE 67.61 68.57
tBASE 63.16 63.82

Table 3: AUC scores. Standard error in brackets.

Bengio, 2010) for other parameters, cross-entropy
loss, and Adam (Kingma and Ba, 2015).7

uBASE: For a comment c authored by user u, this
baseline returns the rejection rate R(u) of the au-
thor’s training comments, if there are T (u) > 10
training comments of u, and 0.5 otherwise.

PuBASE(reject|c) =
{

R(u), if T (u) > 10
0.5, if T (u) ≤ 10

tBASE: This baseline returns the following proba-
bilities, considering the user type t of the author.

PtBASE(reject|c) =


1, if t is Red
0.5, if t is Yellow
0.5, if t is Unknown
0, if t is Green

4 Results and Discussion

Table 3 shows the AUC scores (area under ROC

curve) of the methods considered. Using AUC al-
lows us to compare directly to the results of our
previous work (Pavlopoulos et al., 2017a) and the
work of Wulczyn et al. (2017). Also, AUC consid-
ers performance at multiple classification thresh-
olds t (rejecting comment c when P (reject|c) ≥ t,
for different t values), which gives a more com-
plete picture compared to reporting precision, re-
call, or F-scores for a particular t only. Accuracy is
not an appropriate measure here, because of class
imbalance (Table 1). For methods that involve ran-
dom initializations (all but the baselines), the re-
sults are averaged over three repetitions; we also
report the standard error across the repetitions.

User-specific information always improves our
original RNN-based method (Table 3), but the best
results are obtained by adding user embeddings
(ueRNN). Figure 1 visualizes the user embeddings
learned by ueRNN. The two dimensions of Fig. 1
correspond to the two principal components of the
user embeddings, obtained via PCA.The colors and
numeric labels reflect the rejection rates R(u) of

7We used Keras (http://keras.io/) with the Ten-
sorFlow back-end (http://www.tensorflow.org/).

Figure 1: User embeddings learned by ueRNN (2
principal components). Color represents the rejec-
tion rate R(u) of the user’s training comments.

the corresponding users. Moving from left to right
in Fig. 1, the rejection rate increases, indicating
that the user embeddings of ueRNN capture mostly
the rejection rate R(u). This rate (a single scalar
value per user) can also be captured by the sim-
pler user-specific biases of ubRNN, which explains
why ubRNN also performs well (second best re-
sults in Table 3). Nevertheless, ueRNN performs
better than ubRNN, suggesting that user embed-
dings capture more information than just a user-
specific rejection rate bias.8

Three of the user types (Red, Yellow, Green)
in effect also measure R(u), but in discretized
form (three bins), which also explains why user
type embeddings (teRNN) also perform well (third
best method). The performance of tbRNN is close
to that of teRNN, suggesting again that most of
the information captured by user type embeddings
can also be captured by simpler scalar user-type-
specific biases. The user type biases bt learned by
tbRNN are shown in Table 4. The bias of the Red
type is the largest, the bias of the Green type is the
smallest, and the biases of the Unknown and Yel-
low types are in between, as expected (Section 3).
The same observations hold for the average user-
specific biases bu learned by ubRNN (Table 4).

Overall, Table 3 indicates that user-specific in-
formation (ueRNN, ubRNN) is better than user-type
information (teRNN, tbRNN), and that embeddings
(ueRNN, teRNN) are better than the scalar biases
(ubRNN, tbRNN), though the differences are small.
All the RNN-based methods outperform the two
baselines (uBASE, tBASE), which do not consider
the texts of the comments.

Let us provide a couple of examples, to illus-
trate the role of user-specific information. We en-

8We obtained no clear clusterings with tSNE (van der
Maaten and Hinton, 2008).
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User Type bt of tbRNN average bu of ubRNN
Green −0.471 (±0.007) −0.180 (±0.024)
Yellow 0.198 (±0.015) 0.058 (±0.022)

Unknown 0.256 (±0.021) 0.312 (±0.011)
Red 1.151 (±0.013) 0.387 (±0.023)

Table 4: Biases learned and standard error.

countered a comment saying just “Ooooh, down
to Pireaus. . . ” (translated from Greek), which the
moderator had rejected, because it is the beginning
of an abusive slogan. The rejection probability of
RNN was only 0.34, presumably because there are
no clearly abusive expressions in the comment, but
the rejection probability of ueRNN was 0.72, be-
cause the author had a very high rejection rate.
On the other hand, another comment said “Indeed,
I know nothing about the filth of Greek soccer.”
(translated, apparently not a sarcastic comment).
The original RNN method marginally rejected the
comment (rejection probability 0.57), presumably
because of the ‘filth’ (comments talking about the
filth of some sport or championship are often re-
jected), but ueRNN gave it a very low rejection
probability (0.15), because the author of the com-
ment had a very low rejection rate.

5 Related work

In previous work (Pavlopoulos et al., 2017a), we
showed that our RNN-based method outperforms
DETOX (Wulczyn et al., 2017), the previous state
of the art in user content moderation. DETOX

uses character or word n-gram features, no user-
specific information, and an LR or MLP classifier.
Other related work on abusive content moderation
was reviewed extensively in our previous work
(Pavlopoulos et al., 2017a). Here we focus on pre-
vious work that considered user-specific features
and user embeddings.

Dadvar et al. (2013) detect cyberbullying in
YouTube comments, using an SVM and features
examining the content of each comment (e.g., sec-
ond person pronouns followed by profane words,
common bullying words), but also the profile and
history of the author of the comment (e.g., age, fre-
quency of profane words in past posts). Waseem
et al. (2016) detect hate speech tweets. Their best
method is an LR classifier, with character n-grams
and a feature indicating the gender of the author;
adding the location of the author did not help.

Cheng et al. (2015) predict which users will be
banned from on-line communities. Their best sys-
tem uses a Random Forest or LR classifier, with

features examining the average readability and
sentiment of each user’s past posts, the past activ-
ity of each user (e.g., number of posts daily, pro-
portion of posts that are replies), and the reactions
of the community to the past actions of each user
(e.g., up-votes, number of posts rejected). Lee et
al. (2014) and Napoles et al. (2017) include simi-
lar user-specific features in classifiers intended to
detect high quality on-line discussions.

Amir et al. (2016) detect sarcasm in tweets.
Their best system uses a word-based Convolu-
tional Neural Network (CNN). The feature vec-
tor produced by the CNN (representing the content
of the tweet) is concatenated with the user em-
bedding of the author, and passed on to an MLP

that classifies the tweet as sarcastic or not. This
method outperforms a previous state of the art
sarcasm detection method (Bamman and Smith,
2015) that relies on an LR classifier with hand-
crafted content and user-specific features. We use
an RNN instead of a CNN, and we feed the com-
ment and user embeddings to a simpler LR layer
(Eq. 2), instead of an MLP. Amir et al. discard un-
known users, unlike our experiments, and consider
only sarcasm, whereas moderation also involves
profanity, hate speech, bullying, threats etc.

User embeddings have also been used in: con-
versational agents (Li et al., 2016); sentiment anal-
ysis (Chen et al., 2016); retweet prediction (Zhang
et al., 2016); predicting which topics a user is
likely to tweet about, the accounts a user may want
to follow, and the age, gender, political affiliation
of Twitter users (Benton et al., 2016).

Our previous work (Pavlopoulos et al., 2017a)
also discussed how machine learning can be used
in semi-automatic moderation, by letting modera-
tors focus on ‘difficult’ comments and automati-
cally handling comments that are easier to accept
or reject. In more recent work (Pavlopoulos et al.,
2017b) we also explored how an attention mech-
anism can be used to highlight possibly abusive
words or phrases when showing ‘difficult’ com-
ments to moderators.

6 Conclusions

Experimenting with a dataset of approx. 1.6M user
comments from a Greek sports news portal, we ex-
plored how a state of the art RNN-based modera-
tion method can be improved by adding user em-
beddings, user type embeddings, user biases, or
user type biases. We observed improvements in
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all cases, but user embeddings were the best.
We plan to compare ueRNN to CNN-based meth-

ods that employ user embeddings (Amir et al.,
2016), after replacing the LR layer of ueRNN by
an MLP to allow non-linear combinations of com-
ment and user embeddings.
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