@inproceedings{chesney-etal-2017-incongruent,
title = "Incongruent Headlines: Yet Another Way to Mislead Your Readers",
author = "Chesney, Sophie and
Liakata, Maria and
Poesio, Massimo and
Purver, Matthew",
editor = "Popescu, Octavian and
Strapparava, Carlo",
booktitle = "Proceedings of the 2017 {EMNLP} Workshop: Natural Language Processing meets Journalism",
month = sep,
year = "2017",
address = "Copenhagen, Denmark",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/W17-4210/",
doi = "10.18653/v1/W17-4210",
pages = "56--61",
abstract = "This paper discusses the problem of incongruent headlines: those which do not accurately represent the information contained in the article with which they occur. We emphasise that this phenomenon should be considered separately from recognised problematic headline types such as clickbait and sensationalism, arguing that existing natural language processing (NLP) methods applied to these related concepts are not appropriate for the automatic detection of headline incongruence, as an analysis beyond stylistic traits is necessary. We therefore suggest a number of alternative methodologies that may be appropriate to the task at hand as a foundation for future work in this area. In addition, we provide an analysis of existing data sets which are related to this work, and motivate the need for a novel data set in this domain."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="chesney-etal-2017-incongruent">
<titleInfo>
<title>Incongruent Headlines: Yet Another Way to Mislead Your Readers</title>
</titleInfo>
<name type="personal">
<namePart type="given">Sophie</namePart>
<namePart type="family">Chesney</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Maria</namePart>
<namePart type="family">Liakata</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Massimo</namePart>
<namePart type="family">Poesio</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Matthew</namePart>
<namePart type="family">Purver</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2017-09</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2017 EMNLP Workshop: Natural Language Processing meets Journalism</title>
</titleInfo>
<name type="personal">
<namePart type="given">Octavian</namePart>
<namePart type="family">Popescu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Carlo</namePart>
<namePart type="family">Strapparava</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Copenhagen, Denmark</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>This paper discusses the problem of incongruent headlines: those which do not accurately represent the information contained in the article with which they occur. We emphasise that this phenomenon should be considered separately from recognised problematic headline types such as clickbait and sensationalism, arguing that existing natural language processing (NLP) methods applied to these related concepts are not appropriate for the automatic detection of headline incongruence, as an analysis beyond stylistic traits is necessary. We therefore suggest a number of alternative methodologies that may be appropriate to the task at hand as a foundation for future work in this area. In addition, we provide an analysis of existing data sets which are related to this work, and motivate the need for a novel data set in this domain.</abstract>
<identifier type="citekey">chesney-etal-2017-incongruent</identifier>
<identifier type="doi">10.18653/v1/W17-4210</identifier>
<location>
<url>https://aclanthology.org/W17-4210/</url>
</location>
<part>
<date>2017-09</date>
<extent unit="page">
<start>56</start>
<end>61</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Incongruent Headlines: Yet Another Way to Mislead Your Readers
%A Chesney, Sophie
%A Liakata, Maria
%A Poesio, Massimo
%A Purver, Matthew
%Y Popescu, Octavian
%Y Strapparava, Carlo
%S Proceedings of the 2017 EMNLP Workshop: Natural Language Processing meets Journalism
%D 2017
%8 September
%I Association for Computational Linguistics
%C Copenhagen, Denmark
%F chesney-etal-2017-incongruent
%X This paper discusses the problem of incongruent headlines: those which do not accurately represent the information contained in the article with which they occur. We emphasise that this phenomenon should be considered separately from recognised problematic headline types such as clickbait and sensationalism, arguing that existing natural language processing (NLP) methods applied to these related concepts are not appropriate for the automatic detection of headline incongruence, as an analysis beyond stylistic traits is necessary. We therefore suggest a number of alternative methodologies that may be appropriate to the task at hand as a foundation for future work in this area. In addition, we provide an analysis of existing data sets which are related to this work, and motivate the need for a novel data set in this domain.
%R 10.18653/v1/W17-4210
%U https://aclanthology.org/W17-4210/
%U https://doi.org/10.18653/v1/W17-4210
%P 56-61
Markdown (Informal)
[Incongruent Headlines: Yet Another Way to Mislead Your Readers](https://aclanthology.org/W17-4210/) (Chesney et al., 2017)
ACL