@inproceedings{ribeiro-etal-2017-unsupervised,
title = "Unsupervised Event Clustering and Aggregation from Newswire and Web Articles",
author = "Ribeiro, Swen and
Ferret, Olivier and
Tannier, Xavier",
editor = "Popescu, Octavian and
Strapparava, Carlo",
booktitle = "Proceedings of the 2017 {EMNLP} Workshop: Natural Language Processing meets Journalism",
month = sep,
year = "2017",
address = "Copenhagen, Denmark",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/W17-4211",
doi = "10.18653/v1/W17-4211",
pages = "62--67",
abstract = "In this paper, we present an unsupervised pipeline approach for clustering news articles based on identified event instances in their content. We leverage press agency newswire and monolingual word alignment techniques to build meaningful and linguistically varied clusters of articles from the web in the perspective of a broader event type detection task. We validate our approach on a manually annotated corpus of Web articles.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="ribeiro-etal-2017-unsupervised">
<titleInfo>
<title>Unsupervised Event Clustering and Aggregation from Newswire and Web Articles</title>
</titleInfo>
<name type="personal">
<namePart type="given">Swen</namePart>
<namePart type="family">Ribeiro</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Olivier</namePart>
<namePart type="family">Ferret</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xavier</namePart>
<namePart type="family">Tannier</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2017-09</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2017 EMNLP Workshop: Natural Language Processing meets Journalism</title>
</titleInfo>
<name type="personal">
<namePart type="given">Octavian</namePart>
<namePart type="family">Popescu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Carlo</namePart>
<namePart type="family">Strapparava</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Copenhagen, Denmark</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>In this paper, we present an unsupervised pipeline approach for clustering news articles based on identified event instances in their content. We leverage press agency newswire and monolingual word alignment techniques to build meaningful and linguistically varied clusters of articles from the web in the perspective of a broader event type detection task. We validate our approach on a manually annotated corpus of Web articles.</abstract>
<identifier type="citekey">ribeiro-etal-2017-unsupervised</identifier>
<identifier type="doi">10.18653/v1/W17-4211</identifier>
<location>
<url>https://aclanthology.org/W17-4211</url>
</location>
<part>
<date>2017-09</date>
<extent unit="page">
<start>62</start>
<end>67</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Unsupervised Event Clustering and Aggregation from Newswire and Web Articles
%A Ribeiro, Swen
%A Ferret, Olivier
%A Tannier, Xavier
%Y Popescu, Octavian
%Y Strapparava, Carlo
%S Proceedings of the 2017 EMNLP Workshop: Natural Language Processing meets Journalism
%D 2017
%8 September
%I Association for Computational Linguistics
%C Copenhagen, Denmark
%F ribeiro-etal-2017-unsupervised
%X In this paper, we present an unsupervised pipeline approach for clustering news articles based on identified event instances in their content. We leverage press agency newswire and monolingual word alignment techniques to build meaningful and linguistically varied clusters of articles from the web in the perspective of a broader event type detection task. We validate our approach on a manually annotated corpus of Web articles.
%R 10.18653/v1/W17-4211
%U https://aclanthology.org/W17-4211
%U https://doi.org/10.18653/v1/W17-4211
%P 62-67
Markdown (Informal)
[Unsupervised Event Clustering and Aggregation from Newswire and Web Articles](https://aclanthology.org/W17-4211) (Ribeiro et al., 2017)
ACL