@inproceedings{kolhatkar-taboada-2017-using,
title = "Using {N}ew {Y}ork {T}imes Picks to Identify Constructive Comments",
author = "Kolhatkar, Varada and
Taboada, Maite",
editor = "Popescu, Octavian and
Strapparava, Carlo",
booktitle = "Proceedings of the 2017 {EMNLP} Workshop: Natural Language Processing meets Journalism",
month = sep,
year = "2017",
address = "Copenhagen, Denmark",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/W17-4218",
doi = "10.18653/v1/W17-4218",
pages = "100--105",
abstract = "We examine the extent to which we are able to automatically identify constructive online comments. We build several classifiers using New York Times Picks as positive examples and non-constructive thread comments from the Yahoo News Annotated Comments Corpus as negative examples of constructive online comments. We evaluate these classifiers on a crowd-annotated corpus containing 1,121 comments. Our best classifier achieves a top F1 score of 0.84.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="kolhatkar-taboada-2017-using">
<titleInfo>
<title>Using New York Times Picks to Identify Constructive Comments</title>
</titleInfo>
<name type="personal">
<namePart type="given">Varada</namePart>
<namePart type="family">Kolhatkar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Maite</namePart>
<namePart type="family">Taboada</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2017-09</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2017 EMNLP Workshop: Natural Language Processing meets Journalism</title>
</titleInfo>
<name type="personal">
<namePart type="given">Octavian</namePart>
<namePart type="family">Popescu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Carlo</namePart>
<namePart type="family">Strapparava</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Copenhagen, Denmark</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We examine the extent to which we are able to automatically identify constructive online comments. We build several classifiers using New York Times Picks as positive examples and non-constructive thread comments from the Yahoo News Annotated Comments Corpus as negative examples of constructive online comments. We evaluate these classifiers on a crowd-annotated corpus containing 1,121 comments. Our best classifier achieves a top F1 score of 0.84.</abstract>
<identifier type="citekey">kolhatkar-taboada-2017-using</identifier>
<identifier type="doi">10.18653/v1/W17-4218</identifier>
<location>
<url>https://aclanthology.org/W17-4218</url>
</location>
<part>
<date>2017-09</date>
<extent unit="page">
<start>100</start>
<end>105</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Using New York Times Picks to Identify Constructive Comments
%A Kolhatkar, Varada
%A Taboada, Maite
%Y Popescu, Octavian
%Y Strapparava, Carlo
%S Proceedings of the 2017 EMNLP Workshop: Natural Language Processing meets Journalism
%D 2017
%8 September
%I Association for Computational Linguistics
%C Copenhagen, Denmark
%F kolhatkar-taboada-2017-using
%X We examine the extent to which we are able to automatically identify constructive online comments. We build several classifiers using New York Times Picks as positive examples and non-constructive thread comments from the Yahoo News Annotated Comments Corpus as negative examples of constructive online comments. We evaluate these classifiers on a crowd-annotated corpus containing 1,121 comments. Our best classifier achieves a top F1 score of 0.84.
%R 10.18653/v1/W17-4218
%U https://aclanthology.org/W17-4218
%U https://doi.org/10.18653/v1/W17-4218
%P 100-105
Markdown (Informal)
[Using New York Times Picks to Identify Constructive Comments](https://aclanthology.org/W17-4218) (Kolhatkar & Taboada, 2017)
ACL