@inproceedings{singla-etal-2017-automatic,
title = "Automatic Community Creation for Abstractive Spoken Conversations Summarization",
author = "Singla, Karan and
Stepanov, Evgeny and
Bayer, Ali Orkan and
Carenini, Giuseppe and
Riccardi, Giuseppe",
editor = "Wang, Lu and
Cheung, Jackie Chi Kit and
Carenini, Giuseppe and
Liu, Fei",
booktitle = "Proceedings of the Workshop on New Frontiers in Summarization",
month = sep,
year = "2017",
address = "Copenhagen, Denmark",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/W17-4506",
doi = "10.18653/v1/W17-4506",
pages = "43--47",
abstract = "Summarization of spoken conversations is a challenging task, since it requires deep understanding of dialogs. Abstractive summarization techniques rely on linking the summary sentences to sets of original conversation sentences, i.e. communities. Unfortunately, such linking information is rarely available or requires trained annotators. We propose and experiment automatic community creation using cosine similarity on different levels of representation: raw text, WordNet SynSet IDs, and word embeddings. We show that the abstractive summarization systems with automatic communities significantly outperform previously published results on both English and Italian corpora.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="singla-etal-2017-automatic">
<titleInfo>
<title>Automatic Community Creation for Abstractive Spoken Conversations Summarization</title>
</titleInfo>
<name type="personal">
<namePart type="given">Karan</namePart>
<namePart type="family">Singla</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Evgeny</namePart>
<namePart type="family">Stepanov</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ali</namePart>
<namePart type="given">Orkan</namePart>
<namePart type="family">Bayer</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Giuseppe</namePart>
<namePart type="family">Carenini</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Giuseppe</namePart>
<namePart type="family">Riccardi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2017-09</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Workshop on New Frontiers in Summarization</title>
</titleInfo>
<name type="personal">
<namePart type="given">Lu</namePart>
<namePart type="family">Wang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jackie</namePart>
<namePart type="given">Chi</namePart>
<namePart type="given">Kit</namePart>
<namePart type="family">Cheung</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Giuseppe</namePart>
<namePart type="family">Carenini</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Fei</namePart>
<namePart type="family">Liu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Copenhagen, Denmark</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Summarization of spoken conversations is a challenging task, since it requires deep understanding of dialogs. Abstractive summarization techniques rely on linking the summary sentences to sets of original conversation sentences, i.e. communities. Unfortunately, such linking information is rarely available or requires trained annotators. We propose and experiment automatic community creation using cosine similarity on different levels of representation: raw text, WordNet SynSet IDs, and word embeddings. We show that the abstractive summarization systems with automatic communities significantly outperform previously published results on both English and Italian corpora.</abstract>
<identifier type="citekey">singla-etal-2017-automatic</identifier>
<identifier type="doi">10.18653/v1/W17-4506</identifier>
<location>
<url>https://aclanthology.org/W17-4506</url>
</location>
<part>
<date>2017-09</date>
<extent unit="page">
<start>43</start>
<end>47</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Automatic Community Creation for Abstractive Spoken Conversations Summarization
%A Singla, Karan
%A Stepanov, Evgeny
%A Bayer, Ali Orkan
%A Carenini, Giuseppe
%A Riccardi, Giuseppe
%Y Wang, Lu
%Y Cheung, Jackie Chi Kit
%Y Carenini, Giuseppe
%Y Liu, Fei
%S Proceedings of the Workshop on New Frontiers in Summarization
%D 2017
%8 September
%I Association for Computational Linguistics
%C Copenhagen, Denmark
%F singla-etal-2017-automatic
%X Summarization of spoken conversations is a challenging task, since it requires deep understanding of dialogs. Abstractive summarization techniques rely on linking the summary sentences to sets of original conversation sentences, i.e. communities. Unfortunately, such linking information is rarely available or requires trained annotators. We propose and experiment automatic community creation using cosine similarity on different levels of representation: raw text, WordNet SynSet IDs, and word embeddings. We show that the abstractive summarization systems with automatic communities significantly outperform previously published results on both English and Italian corpora.
%R 10.18653/v1/W17-4506
%U https://aclanthology.org/W17-4506
%U https://doi.org/10.18653/v1/W17-4506
%P 43-47
Markdown (Informal)
[Automatic Community Creation for Abstractive Spoken Conversations Summarization](https://aclanthology.org/W17-4506) (Singla et al., 2017)
ACL