@inproceedings{loaiciga-etal-2017-findings,
    title = "Findings of the 2017 {D}isco{MT} Shared Task on Cross-lingual Pronoun Prediction",
    author = {Lo{\'a}iciga, Sharid  and
      Stymne, Sara  and
      Nakov, Preslav  and
      Hardmeier, Christian  and
      Tiedemann, J{\"o}rg  and
      Cettolo, Mauro  and
      Versley, Yannick},
    editor = {Webber, Bonnie  and
      Popescu-Belis, Andrei  and
      Tiedemann, J{\"o}rg},
    booktitle = "Proceedings of the Third Workshop on Discourse in Machine Translation",
    month = sep,
    year = "2017",
    address = "Copenhagen, Denmark",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/W17-4801/",
    doi = "10.18653/v1/W17-4801",
    pages = "1--16",
    abstract = "We describe the design, the setup, and the evaluation results of the DiscoMT 2017 shared task on cross-lingual pronoun prediction. The task asked participants to predict a target-language pronoun given a source-language pronoun in the context of a sentence. We further provided a lemmatized target-language human-authored translation of the source sentence, and automatic word alignments between the source sentence words and the target-language lemmata. The aim of the task was to predict, for each target-language pronoun placeholder, the word that should replace it from a small, closed set of classes, using any type of information that can be extracted from the entire document. We offered four subtasks, each for a different language pair and translation direction: English-to-French, English-to-German, German-to-English, and Spanish-to-English. Five teams participated in the shared task, making submissions for all language pairs. The evaluation results show that most participating teams outperformed two strong n-gram-based language model-based baseline systems by a sizable margin."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="loaiciga-etal-2017-findings">
    <titleInfo>
        <title>Findings of the 2017 DiscoMT Shared Task on Cross-lingual Pronoun Prediction</title>
    </titleInfo>
    <name type="personal">
        <namePart type="given">Sharid</namePart>
        <namePart type="family">Loáiciga</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Sara</namePart>
        <namePart type="family">Stymne</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Preslav</namePart>
        <namePart type="family">Nakov</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Christian</namePart>
        <namePart type="family">Hardmeier</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Jörg</namePart>
        <namePart type="family">Tiedemann</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Mauro</namePart>
        <namePart type="family">Cettolo</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Yannick</namePart>
        <namePart type="family">Versley</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <originInfo>
        <dateIssued>2017-09</dateIssued>
    </originInfo>
    <typeOfResource>text</typeOfResource>
    <relatedItem type="host">
        <titleInfo>
            <title>Proceedings of the Third Workshop on Discourse in Machine Translation</title>
        </titleInfo>
        <name type="personal">
            <namePart type="given">Bonnie</namePart>
            <namePart type="family">Webber</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Andrei</namePart>
            <namePart type="family">Popescu-Belis</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Jörg</namePart>
            <namePart type="family">Tiedemann</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <originInfo>
            <publisher>Association for Computational Linguistics</publisher>
            <place>
                <placeTerm type="text">Copenhagen, Denmark</placeTerm>
            </place>
        </originInfo>
        <genre authority="marcgt">conference publication</genre>
    </relatedItem>
    <abstract>We describe the design, the setup, and the evaluation results of the DiscoMT 2017 shared task on cross-lingual pronoun prediction. The task asked participants to predict a target-language pronoun given a source-language pronoun in the context of a sentence. We further provided a lemmatized target-language human-authored translation of the source sentence, and automatic word alignments between the source sentence words and the target-language lemmata. The aim of the task was to predict, for each target-language pronoun placeholder, the word that should replace it from a small, closed set of classes, using any type of information that can be extracted from the entire document. We offered four subtasks, each for a different language pair and translation direction: English-to-French, English-to-German, German-to-English, and Spanish-to-English. Five teams participated in the shared task, making submissions for all language pairs. The evaluation results show that most participating teams outperformed two strong n-gram-based language model-based baseline systems by a sizable margin.</abstract>
    <identifier type="citekey">loaiciga-etal-2017-findings</identifier>
    <identifier type="doi">10.18653/v1/W17-4801</identifier>
    <location>
        <url>https://aclanthology.org/W17-4801/</url>
    </location>
    <part>
        <date>2017-09</date>
        <extent unit="page">
            <start>1</start>
            <end>16</end>
        </extent>
    </part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Findings of the 2017 DiscoMT Shared Task on Cross-lingual Pronoun Prediction
%A Loáiciga, Sharid
%A Stymne, Sara
%A Nakov, Preslav
%A Hardmeier, Christian
%A Tiedemann, Jörg
%A Cettolo, Mauro
%A Versley, Yannick
%Y Webber, Bonnie
%Y Popescu-Belis, Andrei
%Y Tiedemann, Jörg
%S Proceedings of the Third Workshop on Discourse in Machine Translation
%D 2017
%8 September
%I Association for Computational Linguistics
%C Copenhagen, Denmark
%F loaiciga-etal-2017-findings
%X We describe the design, the setup, and the evaluation results of the DiscoMT 2017 shared task on cross-lingual pronoun prediction. The task asked participants to predict a target-language pronoun given a source-language pronoun in the context of a sentence. We further provided a lemmatized target-language human-authored translation of the source sentence, and automatic word alignments between the source sentence words and the target-language lemmata. The aim of the task was to predict, for each target-language pronoun placeholder, the word that should replace it from a small, closed set of classes, using any type of information that can be extracted from the entire document. We offered four subtasks, each for a different language pair and translation direction: English-to-French, English-to-German, German-to-English, and Spanish-to-English. Five teams participated in the shared task, making submissions for all language pairs. The evaluation results show that most participating teams outperformed two strong n-gram-based language model-based baseline systems by a sizable margin.
%R 10.18653/v1/W17-4801
%U https://aclanthology.org/W17-4801/
%U https://doi.org/10.18653/v1/W17-4801
%P 1-16
Markdown (Informal)
[Findings of the 2017 DiscoMT Shared Task on Cross-lingual Pronoun Prediction](https://aclanthology.org/W17-4801/) (Loáiciga et al., DiscoMT 2017)
ACL