@inproceedings{jean-etal-2017-neural,
title = "Neural Machine Translation for Cross-Lingual Pronoun Prediction",
author = "Jean, Sebastien and
Lauly, Stanislas and
Firat, Orhan and
Cho, Kyunghyun",
editor = {Webber, Bonnie and
Popescu-Belis, Andrei and
Tiedemann, J{\"o}rg},
booktitle = "Proceedings of the Third Workshop on Discourse in Machine Translation",
month = sep,
year = "2017",
address = "Copenhagen, Denmark",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/W17-4806",
doi = "10.18653/v1/W17-4806",
pages = "54--57",
abstract = "In this paper we present our systems for the DiscoMT 2017 cross-lingual pronoun prediction shared task. For all four language pairs, we trained a standard attention-based neural machine translation system as well as three variants that incorporate information from the preceding source sentence. We show that our systems, which are not specifically designed for pronoun prediction and may be used to generate complete sentence translations, generally achieve competitive results on this task.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="jean-etal-2017-neural">
<titleInfo>
<title>Neural Machine Translation for Cross-Lingual Pronoun Prediction</title>
</titleInfo>
<name type="personal">
<namePart type="given">Sebastien</namePart>
<namePart type="family">Jean</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Stanislas</namePart>
<namePart type="family">Lauly</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Orhan</namePart>
<namePart type="family">Firat</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kyunghyun</namePart>
<namePart type="family">Cho</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2017-09</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Third Workshop on Discourse in Machine Translation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Bonnie</namePart>
<namePart type="family">Webber</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Andrei</namePart>
<namePart type="family">Popescu-Belis</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jörg</namePart>
<namePart type="family">Tiedemann</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Copenhagen, Denmark</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>In this paper we present our systems for the DiscoMT 2017 cross-lingual pronoun prediction shared task. For all four language pairs, we trained a standard attention-based neural machine translation system as well as three variants that incorporate information from the preceding source sentence. We show that our systems, which are not specifically designed for pronoun prediction and may be used to generate complete sentence translations, generally achieve competitive results on this task.</abstract>
<identifier type="citekey">jean-etal-2017-neural</identifier>
<identifier type="doi">10.18653/v1/W17-4806</identifier>
<location>
<url>https://aclanthology.org/W17-4806</url>
</location>
<part>
<date>2017-09</date>
<extent unit="page">
<start>54</start>
<end>57</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Neural Machine Translation for Cross-Lingual Pronoun Prediction
%A Jean, Sebastien
%A Lauly, Stanislas
%A Firat, Orhan
%A Cho, Kyunghyun
%Y Webber, Bonnie
%Y Popescu-Belis, Andrei
%Y Tiedemann, Jörg
%S Proceedings of the Third Workshop on Discourse in Machine Translation
%D 2017
%8 September
%I Association for Computational Linguistics
%C Copenhagen, Denmark
%F jean-etal-2017-neural
%X In this paper we present our systems for the DiscoMT 2017 cross-lingual pronoun prediction shared task. For all four language pairs, we trained a standard attention-based neural machine translation system as well as three variants that incorporate information from the preceding source sentence. We show that our systems, which are not specifically designed for pronoun prediction and may be used to generate complete sentence translations, generally achieve competitive results on this task.
%R 10.18653/v1/W17-4806
%U https://aclanthology.org/W17-4806
%U https://doi.org/10.18653/v1/W17-4806
%P 54-57
Markdown (Informal)
[Neural Machine Translation for Cross-Lingual Pronoun Prediction](https://aclanthology.org/W17-4806) (Jean et al., DiscoMT 2017)
ACL