@inproceedings{luotolahti-etal-2017-cross,
title = "Cross-Lingual Pronoun Prediction with Deep Recurrent Neural Networks v2.0",
author = "Luotolahti, Juhani and
Kanerva, Jenna and
Ginter, Filip",
editor = {Webber, Bonnie and
Popescu-Belis, Andrei and
Tiedemann, J{\"o}rg},
booktitle = "Proceedings of the Third Workshop on Discourse in Machine Translation",
month = sep,
year = "2017",
address = "Copenhagen, Denmark",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/W17-4808",
doi = "10.18653/v1/W17-4808",
pages = "63--66",
abstract = "In this paper we present our system in the DiscoMT 2017 Shared Task on Crosslingual Pronoun Prediction. Our entry builds on our last year{'}s success, our system based on deep recurrent neural networks outperformed all the other systems with a clear margin. This year we investigate whether different pre-trained word embeddings can be used to improve the neural systems, and whether the recently published Gated Convolutions outperform the Gated Recurrent Units used last year.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="luotolahti-etal-2017-cross">
<titleInfo>
<title>Cross-Lingual Pronoun Prediction with Deep Recurrent Neural Networks v2.0</title>
</titleInfo>
<name type="personal">
<namePart type="given">Juhani</namePart>
<namePart type="family">Luotolahti</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jenna</namePart>
<namePart type="family">Kanerva</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Filip</namePart>
<namePart type="family">Ginter</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2017-09</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Third Workshop on Discourse in Machine Translation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Bonnie</namePart>
<namePart type="family">Webber</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Andrei</namePart>
<namePart type="family">Popescu-Belis</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jörg</namePart>
<namePart type="family">Tiedemann</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Copenhagen, Denmark</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>In this paper we present our system in the DiscoMT 2017 Shared Task on Crosslingual Pronoun Prediction. Our entry builds on our last year’s success, our system based on deep recurrent neural networks outperformed all the other systems with a clear margin. This year we investigate whether different pre-trained word embeddings can be used to improve the neural systems, and whether the recently published Gated Convolutions outperform the Gated Recurrent Units used last year.</abstract>
<identifier type="citekey">luotolahti-etal-2017-cross</identifier>
<identifier type="doi">10.18653/v1/W17-4808</identifier>
<location>
<url>https://aclanthology.org/W17-4808</url>
</location>
<part>
<date>2017-09</date>
<extent unit="page">
<start>63</start>
<end>66</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Cross-Lingual Pronoun Prediction with Deep Recurrent Neural Networks v2.0
%A Luotolahti, Juhani
%A Kanerva, Jenna
%A Ginter, Filip
%Y Webber, Bonnie
%Y Popescu-Belis, Andrei
%Y Tiedemann, Jörg
%S Proceedings of the Third Workshop on Discourse in Machine Translation
%D 2017
%8 September
%I Association for Computational Linguistics
%C Copenhagen, Denmark
%F luotolahti-etal-2017-cross
%X In this paper we present our system in the DiscoMT 2017 Shared Task on Crosslingual Pronoun Prediction. Our entry builds on our last year’s success, our system based on deep recurrent neural networks outperformed all the other systems with a clear margin. This year we investigate whether different pre-trained word embeddings can be used to improve the neural systems, and whether the recently published Gated Convolutions outperform the Gated Recurrent Units used last year.
%R 10.18653/v1/W17-4808
%U https://aclanthology.org/W17-4808
%U https://doi.org/10.18653/v1/W17-4808
%P 63-66
Markdown (Informal)
[Cross-Lingual Pronoun Prediction with Deep Recurrent Neural Networks v2.0](https://aclanthology.org/W17-4808) (Luotolahti et al., DiscoMT 2017)
ACL