@inproceedings{ficler-goldberg-2017-controlling,
title = "Controlling Linguistic Style Aspects in Neural Language Generation",
author = "Ficler, Jessica and
Goldberg, Yoav",
editor = "Brooke, Julian and
Solorio, Thamar and
Koppel, Moshe",
booktitle = "Proceedings of the Workshop on Stylistic Variation",
month = sep,
year = "2017",
address = "Copenhagen, Denmark",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/W17-4912/",
doi = "10.18653/v1/W17-4912",
pages = "94--104",
abstract = "Most work on neural natural language generation (NNLG) focus on controlling the content of the generated text. We experiment with controling several stylistic aspects of the generated text, in addition to its content. The method is based on conditioned RNN language model, where the desired content as well as the stylistic parameters serve as conditioning contexts. We demonstrate the approach on the movie reviews domain and show that it is successful in generating coherent sentences corresponding to the required linguistic style and content."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="ficler-goldberg-2017-controlling">
<titleInfo>
<title>Controlling Linguistic Style Aspects in Neural Language Generation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Jessica</namePart>
<namePart type="family">Ficler</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yoav</namePart>
<namePart type="family">Goldberg</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2017-09</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Workshop on Stylistic Variation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Julian</namePart>
<namePart type="family">Brooke</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Thamar</namePart>
<namePart type="family">Solorio</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Moshe</namePart>
<namePart type="family">Koppel</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Copenhagen, Denmark</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Most work on neural natural language generation (NNLG) focus on controlling the content of the generated text. We experiment with controling several stylistic aspects of the generated text, in addition to its content. The method is based on conditioned RNN language model, where the desired content as well as the stylistic parameters serve as conditioning contexts. We demonstrate the approach on the movie reviews domain and show that it is successful in generating coherent sentences corresponding to the required linguistic style and content.</abstract>
<identifier type="citekey">ficler-goldberg-2017-controlling</identifier>
<identifier type="doi">10.18653/v1/W17-4912</identifier>
<location>
<url>https://aclanthology.org/W17-4912/</url>
</location>
<part>
<date>2017-09</date>
<extent unit="page">
<start>94</start>
<end>104</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Controlling Linguistic Style Aspects in Neural Language Generation
%A Ficler, Jessica
%A Goldberg, Yoav
%Y Brooke, Julian
%Y Solorio, Thamar
%Y Koppel, Moshe
%S Proceedings of the Workshop on Stylistic Variation
%D 2017
%8 September
%I Association for Computational Linguistics
%C Copenhagen, Denmark
%F ficler-goldberg-2017-controlling
%X Most work on neural natural language generation (NNLG) focus on controlling the content of the generated text. We experiment with controling several stylistic aspects of the generated text, in addition to its content. The method is based on conditioned RNN language model, where the desired content as well as the stylistic parameters serve as conditioning contexts. We demonstrate the approach on the movie reviews domain and show that it is successful in generating coherent sentences corresponding to the required linguistic style and content.
%R 10.18653/v1/W17-4912
%U https://aclanthology.org/W17-4912/
%U https://doi.org/10.18653/v1/W17-4912
%P 94-104
Markdown (Informal)
[Controlling Linguistic Style Aspects in Neural Language Generation](https://aclanthology.org/W17-4912/) (Ficler & Goldberg, Style-Var 2017)
ACL