@inproceedings{chen-lee-2017-predicting,
title = "Predicting Audience`s Laughter During Presentations Using Convolutional Neural Network",
author = "Chen, Lei and
Lee, Chong Min",
editor = "Tetreault, Joel and
Burstein, Jill and
Leacock, Claudia and
Yannakoudakis, Helen",
booktitle = "Proceedings of the 12th Workshop on Innovative Use of {NLP} for Building Educational Applications",
month = sep,
year = "2017",
address = "Copenhagen, Denmark",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/W17-5009/",
doi = "10.18653/v1/W17-5009",
pages = "86--90",
abstract = "Public speakings play important roles in schools and work places and properly using humor contributes to effective presentations. For the purpose of automatically evaluating speakers' humor usage, we build a presentation corpus containing humorous utterances based on TED talks. Compared to previous data resources supporting humor recognition research, ours has several advantages, including (a) both positive and negative instances coming from a homogeneous data set, (b) containing a large number of speakers, and (c) being open. Focusing on using lexical cues for humor recognition, we systematically compare a newly emerging text classification method based on Convolutional Neural Networks (CNNs) with a well-established conventional method using linguistic knowledge. The advantages of the CNN method are both getting higher detection accuracies and being able to learn essential features automatically."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="chen-lee-2017-predicting">
<titleInfo>
<title>Predicting Audience‘s Laughter During Presentations Using Convolutional Neural Network</title>
</titleInfo>
<name type="personal">
<namePart type="given">Lei</namePart>
<namePart type="family">Chen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Chong</namePart>
<namePart type="given">Min</namePart>
<namePart type="family">Lee</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2017-09</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 12th Workshop on Innovative Use of NLP for Building Educational Applications</title>
</titleInfo>
<name type="personal">
<namePart type="given">Joel</namePart>
<namePart type="family">Tetreault</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jill</namePart>
<namePart type="family">Burstein</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Claudia</namePart>
<namePart type="family">Leacock</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Helen</namePart>
<namePart type="family">Yannakoudakis</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Copenhagen, Denmark</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Public speakings play important roles in schools and work places and properly using humor contributes to effective presentations. For the purpose of automatically evaluating speakers’ humor usage, we build a presentation corpus containing humorous utterances based on TED talks. Compared to previous data resources supporting humor recognition research, ours has several advantages, including (a) both positive and negative instances coming from a homogeneous data set, (b) containing a large number of speakers, and (c) being open. Focusing on using lexical cues for humor recognition, we systematically compare a newly emerging text classification method based on Convolutional Neural Networks (CNNs) with a well-established conventional method using linguistic knowledge. The advantages of the CNN method are both getting higher detection accuracies and being able to learn essential features automatically.</abstract>
<identifier type="citekey">chen-lee-2017-predicting</identifier>
<identifier type="doi">10.18653/v1/W17-5009</identifier>
<location>
<url>https://aclanthology.org/W17-5009/</url>
</location>
<part>
<date>2017-09</date>
<extent unit="page">
<start>86</start>
<end>90</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Predicting Audience‘s Laughter During Presentations Using Convolutional Neural Network
%A Chen, Lei
%A Lee, Chong Min
%Y Tetreault, Joel
%Y Burstein, Jill
%Y Leacock, Claudia
%Y Yannakoudakis, Helen
%S Proceedings of the 12th Workshop on Innovative Use of NLP for Building Educational Applications
%D 2017
%8 September
%I Association for Computational Linguistics
%C Copenhagen, Denmark
%F chen-lee-2017-predicting
%X Public speakings play important roles in schools and work places and properly using humor contributes to effective presentations. For the purpose of automatically evaluating speakers’ humor usage, we build a presentation corpus containing humorous utterances based on TED talks. Compared to previous data resources supporting humor recognition research, ours has several advantages, including (a) both positive and negative instances coming from a homogeneous data set, (b) containing a large number of speakers, and (c) being open. Focusing on using lexical cues for humor recognition, we systematically compare a newly emerging text classification method based on Convolutional Neural Networks (CNNs) with a well-established conventional method using linguistic knowledge. The advantages of the CNN method are both getting higher detection accuracies and being able to learn essential features automatically.
%R 10.18653/v1/W17-5009
%U https://aclanthology.org/W17-5009/
%U https://doi.org/10.18653/v1/W17-5009
%P 86-90
Markdown (Informal)
[Predicting Audience’s Laughter During Presentations Using Convolutional Neural Network](https://aclanthology.org/W17-5009/) (Chen & Lee, BEA 2017)
ACL