@inproceedings{sheng-etal-2017-investigation,
title = "An Investigation into the Pedagogical Features of Documents",
author = "Sheng, Emily and
Natarajan, Prem and
Gordon, Jonathan and
Burns, Gully",
editor = "Tetreault, Joel and
Burstein, Jill and
Leacock, Claudia and
Yannakoudakis, Helen",
booktitle = "Proceedings of the 12th Workshop on Innovative Use of {NLP} for Building Educational Applications",
month = sep,
year = "2017",
address = "Copenhagen, Denmark",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/W17-5012",
doi = "10.18653/v1/W17-5012",
pages = "109--120",
abstract = "Characterizing the content of a technical document in terms of its learning utility can be useful for applications related to education, such as generating reading lists from large collections of documents. We refer to this learning utility as the {``}pedagogical value{''} of the document to the learner. While pedagogical value is an important concept that has been studied extensively within the education domain, there has been little work exploring it from a computational, i.e., natural language processing (NLP), perspective. To allow a computational exploration of this concept, we introduce the notion of {``}pedagogical roles{''} of documents (e.g., Tutorial and Survey) as an intermediary component for the study of pedagogical value. Given the lack of available corpora for our exploration, we create the first annotated corpus of pedagogical roles and use it to test baseline techniques for automatic prediction of such roles.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="sheng-etal-2017-investigation">
<titleInfo>
<title>An Investigation into the Pedagogical Features of Documents</title>
</titleInfo>
<name type="personal">
<namePart type="given">Emily</namePart>
<namePart type="family">Sheng</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Prem</namePart>
<namePart type="family">Natarajan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jonathan</namePart>
<namePart type="family">Gordon</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Gully</namePart>
<namePart type="family">Burns</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2017-09</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 12th Workshop on Innovative Use of NLP for Building Educational Applications</title>
</titleInfo>
<name type="personal">
<namePart type="given">Joel</namePart>
<namePart type="family">Tetreault</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jill</namePart>
<namePart type="family">Burstein</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Claudia</namePart>
<namePart type="family">Leacock</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Helen</namePart>
<namePart type="family">Yannakoudakis</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Copenhagen, Denmark</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Characterizing the content of a technical document in terms of its learning utility can be useful for applications related to education, such as generating reading lists from large collections of documents. We refer to this learning utility as the “pedagogical value” of the document to the learner. While pedagogical value is an important concept that has been studied extensively within the education domain, there has been little work exploring it from a computational, i.e., natural language processing (NLP), perspective. To allow a computational exploration of this concept, we introduce the notion of “pedagogical roles” of documents (e.g., Tutorial and Survey) as an intermediary component for the study of pedagogical value. Given the lack of available corpora for our exploration, we create the first annotated corpus of pedagogical roles and use it to test baseline techniques for automatic prediction of such roles.</abstract>
<identifier type="citekey">sheng-etal-2017-investigation</identifier>
<identifier type="doi">10.18653/v1/W17-5012</identifier>
<location>
<url>https://aclanthology.org/W17-5012</url>
</location>
<part>
<date>2017-09</date>
<extent unit="page">
<start>109</start>
<end>120</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T An Investigation into the Pedagogical Features of Documents
%A Sheng, Emily
%A Natarajan, Prem
%A Gordon, Jonathan
%A Burns, Gully
%Y Tetreault, Joel
%Y Burstein, Jill
%Y Leacock, Claudia
%Y Yannakoudakis, Helen
%S Proceedings of the 12th Workshop on Innovative Use of NLP for Building Educational Applications
%D 2017
%8 September
%I Association for Computational Linguistics
%C Copenhagen, Denmark
%F sheng-etal-2017-investigation
%X Characterizing the content of a technical document in terms of its learning utility can be useful for applications related to education, such as generating reading lists from large collections of documents. We refer to this learning utility as the “pedagogical value” of the document to the learner. While pedagogical value is an important concept that has been studied extensively within the education domain, there has been little work exploring it from a computational, i.e., natural language processing (NLP), perspective. To allow a computational exploration of this concept, we introduce the notion of “pedagogical roles” of documents (e.g., Tutorial and Survey) as an intermediary component for the study of pedagogical value. Given the lack of available corpora for our exploration, we create the first annotated corpus of pedagogical roles and use it to test baseline techniques for automatic prediction of such roles.
%R 10.18653/v1/W17-5012
%U https://aclanthology.org/W17-5012
%U https://doi.org/10.18653/v1/W17-5012
%P 109-120
Markdown (Informal)
[An Investigation into the Pedagogical Features of Documents](https://aclanthology.org/W17-5012) (Sheng et al., BEA 2017)
ACL
- Emily Sheng, Prem Natarajan, Jonathan Gordon, and Gully Burns. 2017. An Investigation into the Pedagogical Features of Documents. In Proceedings of the 12th Workshop on Innovative Use of NLP for Building Educational Applications, pages 109–120, Copenhagen, Denmark. Association for Computational Linguistics.