@inproceedings{jiang-lee-2017-distractor,
title = "Distractor Generation for {C}hinese Fill-in-the-blank Items",
author = "Jiang, Shu and
Lee, John",
editor = "Tetreault, Joel and
Burstein, Jill and
Leacock, Claudia and
Yannakoudakis, Helen",
booktitle = "Proceedings of the 12th Workshop on Innovative Use of {NLP} for Building Educational Applications",
month = sep,
year = "2017",
address = "Copenhagen, Denmark",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/W17-5015",
doi = "10.18653/v1/W17-5015",
pages = "143--148",
abstract = "This paper reports the first study on automatic generation of distractors for fill-in-the-blank items for learning Chinese vocabulary. We investigate the quality of distractors generated by a number of criteria, including part-of-speech, difficulty level, spelling, word co-occurrence and semantic similarity. Evaluations show that a semantic similarity measure, based on the word2vec model, yields distractors that are significantly more plausible than those generated by baseline methods.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="jiang-lee-2017-distractor">
<titleInfo>
<title>Distractor Generation for Chinese Fill-in-the-blank Items</title>
</titleInfo>
<name type="personal">
<namePart type="given">Shu</namePart>
<namePart type="family">Jiang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">John</namePart>
<namePart type="family">Lee</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2017-09</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 12th Workshop on Innovative Use of NLP for Building Educational Applications</title>
</titleInfo>
<name type="personal">
<namePart type="given">Joel</namePart>
<namePart type="family">Tetreault</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jill</namePart>
<namePart type="family">Burstein</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Claudia</namePart>
<namePart type="family">Leacock</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Helen</namePart>
<namePart type="family">Yannakoudakis</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Copenhagen, Denmark</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>This paper reports the first study on automatic generation of distractors for fill-in-the-blank items for learning Chinese vocabulary. We investigate the quality of distractors generated by a number of criteria, including part-of-speech, difficulty level, spelling, word co-occurrence and semantic similarity. Evaluations show that a semantic similarity measure, based on the word2vec model, yields distractors that are significantly more plausible than those generated by baseline methods.</abstract>
<identifier type="citekey">jiang-lee-2017-distractor</identifier>
<identifier type="doi">10.18653/v1/W17-5015</identifier>
<location>
<url>https://aclanthology.org/W17-5015</url>
</location>
<part>
<date>2017-09</date>
<extent unit="page">
<start>143</start>
<end>148</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Distractor Generation for Chinese Fill-in-the-blank Items
%A Jiang, Shu
%A Lee, John
%Y Tetreault, Joel
%Y Burstein, Jill
%Y Leacock, Claudia
%Y Yannakoudakis, Helen
%S Proceedings of the 12th Workshop on Innovative Use of NLP for Building Educational Applications
%D 2017
%8 September
%I Association for Computational Linguistics
%C Copenhagen, Denmark
%F jiang-lee-2017-distractor
%X This paper reports the first study on automatic generation of distractors for fill-in-the-blank items for learning Chinese vocabulary. We investigate the quality of distractors generated by a number of criteria, including part-of-speech, difficulty level, spelling, word co-occurrence and semantic similarity. Evaluations show that a semantic similarity measure, based on the word2vec model, yields distractors that are significantly more plausible than those generated by baseline methods.
%R 10.18653/v1/W17-5015
%U https://aclanthology.org/W17-5015
%U https://doi.org/10.18653/v1/W17-5015
%P 143-148
Markdown (Informal)
[Distractor Generation for Chinese Fill-in-the-blank Items](https://aclanthology.org/W17-5015) (Jiang & Lee, BEA 2017)
ACL