@inproceedings{bjerva-etal-2017-neural,
title = "Neural Networks and Spelling Features for Native Language Identification",
author = {Bjerva, Johannes and
Grigonyt{\.e}, Gintar{\.e} and
{\"O}stling, Robert and
Plank, Barbara},
editor = "Tetreault, Joel and
Burstein, Jill and
Leacock, Claudia and
Yannakoudakis, Helen",
booktitle = "Proceedings of the 12th Workshop on Innovative Use of {NLP} for Building Educational Applications",
month = sep,
year = "2017",
address = "Copenhagen, Denmark",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/W17-5025",
doi = "10.18653/v1/W17-5025",
pages = "235--239",
abstract = "We present the RUG-SU team{'}s submission at the Native Language Identification Shared Task 2017. We combine several approaches into an ensemble, based on spelling error features, a simple neural network using word representations, a deep residual network using word and character features, and a system based on a recurrent neural network. Our best system is an ensemble of neural networks, reaching an F1 score of 0.8323. Although our system is not the highest ranking one, we do outperform the baseline by far.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="bjerva-etal-2017-neural">
<titleInfo>
<title>Neural Networks and Spelling Features for Native Language Identification</title>
</titleInfo>
<name type="personal">
<namePart type="given">Johannes</namePart>
<namePart type="family">Bjerva</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Gintarė</namePart>
<namePart type="family">Grigonytė</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Robert</namePart>
<namePart type="family">Östling</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Barbara</namePart>
<namePart type="family">Plank</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2017-09</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 12th Workshop on Innovative Use of NLP for Building Educational Applications</title>
</titleInfo>
<name type="personal">
<namePart type="given">Joel</namePart>
<namePart type="family">Tetreault</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jill</namePart>
<namePart type="family">Burstein</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Claudia</namePart>
<namePart type="family">Leacock</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Helen</namePart>
<namePart type="family">Yannakoudakis</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Copenhagen, Denmark</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We present the RUG-SU team’s submission at the Native Language Identification Shared Task 2017. We combine several approaches into an ensemble, based on spelling error features, a simple neural network using word representations, a deep residual network using word and character features, and a system based on a recurrent neural network. Our best system is an ensemble of neural networks, reaching an F1 score of 0.8323. Although our system is not the highest ranking one, we do outperform the baseline by far.</abstract>
<identifier type="citekey">bjerva-etal-2017-neural</identifier>
<identifier type="doi">10.18653/v1/W17-5025</identifier>
<location>
<url>https://aclanthology.org/W17-5025</url>
</location>
<part>
<date>2017-09</date>
<extent unit="page">
<start>235</start>
<end>239</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Neural Networks and Spelling Features for Native Language Identification
%A Bjerva, Johannes
%A Grigonytė, Gintarė
%A Östling, Robert
%A Plank, Barbara
%Y Tetreault, Joel
%Y Burstein, Jill
%Y Leacock, Claudia
%Y Yannakoudakis, Helen
%S Proceedings of the 12th Workshop on Innovative Use of NLP for Building Educational Applications
%D 2017
%8 September
%I Association for Computational Linguistics
%C Copenhagen, Denmark
%F bjerva-etal-2017-neural
%X We present the RUG-SU team’s submission at the Native Language Identification Shared Task 2017. We combine several approaches into an ensemble, based on spelling error features, a simple neural network using word representations, a deep residual network using word and character features, and a system based on a recurrent neural network. Our best system is an ensemble of neural networks, reaching an F1 score of 0.8323. Although our system is not the highest ranking one, we do outperform the baseline by far.
%R 10.18653/v1/W17-5025
%U https://aclanthology.org/W17-5025
%U https://doi.org/10.18653/v1/W17-5025
%P 235-239
Markdown (Informal)
[Neural Networks and Spelling Features for Native Language Identification](https://aclanthology.org/W17-5025) (Bjerva et al., BEA 2017)
ACL