@inproceedings{chinkina-meurers-2017-question,
title = "Question Generation for Language Learning: From ensuring texts are read to supporting learning",
author = "Chinkina, Maria and
Meurers, Detmar",
editor = "Tetreault, Joel and
Burstein, Jill and
Leacock, Claudia and
Yannakoudakis, Helen",
booktitle = "Proceedings of the 12th Workshop on Innovative Use of {NLP} for Building Educational Applications",
month = sep,
year = "2017",
address = "Copenhagen, Denmark",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/W17-5038",
doi = "10.18653/v1/W17-5038",
pages = "334--344",
abstract = "In Foreign Language Teaching and Learning (FLTL), questions are systematically used to assess the learner{'}s understanding of a text. Computational linguistic approaches have been developed to generate such questions automatically given a text (e.g., Heilman, 2011). In this paper, we want to broaden the perspective on the different functions questions can play in FLTL and discuss how automatic question generation can support the different uses. Complementing the focus on meaning and comprehension, we want to highlight the fact that questions can also be used to make learners notice form aspects of the linguistic system and their interpretation. Automatically generating questions that target linguistic forms and grammatical categories in a text in essence supports incidental focus-on-form (Loewen, 2005) in a meaning-focused reading task. We discuss two types of questions serving this purpose, how they can be generated automatically; and we report on a crowd-sourcing evaluation comparing automatically generated to manually written questions targeting particle verbs, a challenging linguistic form for learners of English.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="chinkina-meurers-2017-question">
<titleInfo>
<title>Question Generation for Language Learning: From ensuring texts are read to supporting learning</title>
</titleInfo>
<name type="personal">
<namePart type="given">Maria</namePart>
<namePart type="family">Chinkina</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Detmar</namePart>
<namePart type="family">Meurers</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2017-09</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 12th Workshop on Innovative Use of NLP for Building Educational Applications</title>
</titleInfo>
<name type="personal">
<namePart type="given">Joel</namePart>
<namePart type="family">Tetreault</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jill</namePart>
<namePart type="family">Burstein</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Claudia</namePart>
<namePart type="family">Leacock</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Helen</namePart>
<namePart type="family">Yannakoudakis</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Copenhagen, Denmark</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>In Foreign Language Teaching and Learning (FLTL), questions are systematically used to assess the learner’s understanding of a text. Computational linguistic approaches have been developed to generate such questions automatically given a text (e.g., Heilman, 2011). In this paper, we want to broaden the perspective on the different functions questions can play in FLTL and discuss how automatic question generation can support the different uses. Complementing the focus on meaning and comprehension, we want to highlight the fact that questions can also be used to make learners notice form aspects of the linguistic system and their interpretation. Automatically generating questions that target linguistic forms and grammatical categories in a text in essence supports incidental focus-on-form (Loewen, 2005) in a meaning-focused reading task. We discuss two types of questions serving this purpose, how they can be generated automatically; and we report on a crowd-sourcing evaluation comparing automatically generated to manually written questions targeting particle verbs, a challenging linguistic form for learners of English.</abstract>
<identifier type="citekey">chinkina-meurers-2017-question</identifier>
<identifier type="doi">10.18653/v1/W17-5038</identifier>
<location>
<url>https://aclanthology.org/W17-5038</url>
</location>
<part>
<date>2017-09</date>
<extent unit="page">
<start>334</start>
<end>344</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Question Generation for Language Learning: From ensuring texts are read to supporting learning
%A Chinkina, Maria
%A Meurers, Detmar
%Y Tetreault, Joel
%Y Burstein, Jill
%Y Leacock, Claudia
%Y Yannakoudakis, Helen
%S Proceedings of the 12th Workshop on Innovative Use of NLP for Building Educational Applications
%D 2017
%8 September
%I Association for Computational Linguistics
%C Copenhagen, Denmark
%F chinkina-meurers-2017-question
%X In Foreign Language Teaching and Learning (FLTL), questions are systematically used to assess the learner’s understanding of a text. Computational linguistic approaches have been developed to generate such questions automatically given a text (e.g., Heilman, 2011). In this paper, we want to broaden the perspective on the different functions questions can play in FLTL and discuss how automatic question generation can support the different uses. Complementing the focus on meaning and comprehension, we want to highlight the fact that questions can also be used to make learners notice form aspects of the linguistic system and their interpretation. Automatically generating questions that target linguistic forms and grammatical categories in a text in essence supports incidental focus-on-form (Loewen, 2005) in a meaning-focused reading task. We discuss two types of questions serving this purpose, how they can be generated automatically; and we report on a crowd-sourcing evaluation comparing automatically generated to manually written questions targeting particle verbs, a challenging linguistic form for learners of English.
%R 10.18653/v1/W17-5038
%U https://aclanthology.org/W17-5038
%U https://doi.org/10.18653/v1/W17-5038
%P 334-344
Markdown (Informal)
[Question Generation for Language Learning: From ensuring texts are read to supporting learning](https://aclanthology.org/W17-5038) (Chinkina & Meurers, BEA 2017)
ACL