@inproceedings{fierro-etal-2017-200k,
    title = "200{K}+ Crowdsourced Political Arguments for a New {C}hilean Constitution",
    author = "Fierro, Constanza  and
      Fuentes, Claudio  and
      P{\'e}rez, Jorge  and
      Quezada, Mauricio",
    editor = "Habernal, Ivan  and
      Gurevych, Iryna  and
      Ashley, Kevin  and
      Cardie, Claire  and
      Green, Nancy  and
      Litman, Diane  and
      Petasis, Georgios  and
      Reed, Chris  and
      Slonim, Noam  and
      Walker, Vern",
    booktitle = "Proceedings of the 4th Workshop on Argument Mining",
    month = sep,
    year = "2017",
    address = "Copenhagen, Denmark",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/W17-5101/",
    doi = "10.18653/v1/W17-5101",
    pages = "1--10",
    abstract = "In this paper we present the dataset of 200,000+ political arguments produced in the local phase of the 2016 Chilean constitutional process. We describe the human processing of this data by the government officials, and the manual tagging of arguments performed by members of our research group. Afterwards we focus on classification tasks that mimic the human processes, comparing linear methods with neural network architectures. The experiments show that some of the manual tasks are suitable for automatization. In particular, the best methods achieve a 90{\%} top-5 accuracy in a multi-class classification of arguments, and 65{\%} macro-averaged F1-score for tagging arguments according to a three-part argumentation model."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="fierro-etal-2017-200k">
    <titleInfo>
        <title>200K+ Crowdsourced Political Arguments for a New Chilean Constitution</title>
    </titleInfo>
    <name type="personal">
        <namePart type="given">Constanza</namePart>
        <namePart type="family">Fierro</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Claudio</namePart>
        <namePart type="family">Fuentes</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Jorge</namePart>
        <namePart type="family">Pérez</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Mauricio</namePart>
        <namePart type="family">Quezada</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <originInfo>
        <dateIssued>2017-09</dateIssued>
    </originInfo>
    <typeOfResource>text</typeOfResource>
    <relatedItem type="host">
        <titleInfo>
            <title>Proceedings of the 4th Workshop on Argument Mining</title>
        </titleInfo>
        <name type="personal">
            <namePart type="given">Ivan</namePart>
            <namePart type="family">Habernal</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Iryna</namePart>
            <namePart type="family">Gurevych</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Kevin</namePart>
            <namePart type="family">Ashley</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Claire</namePart>
            <namePart type="family">Cardie</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Nancy</namePart>
            <namePart type="family">Green</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Diane</namePart>
            <namePart type="family">Litman</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Georgios</namePart>
            <namePart type="family">Petasis</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Chris</namePart>
            <namePart type="family">Reed</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Noam</namePart>
            <namePart type="family">Slonim</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Vern</namePart>
            <namePart type="family">Walker</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <originInfo>
            <publisher>Association for Computational Linguistics</publisher>
            <place>
                <placeTerm type="text">Copenhagen, Denmark</placeTerm>
            </place>
        </originInfo>
        <genre authority="marcgt">conference publication</genre>
    </relatedItem>
    <abstract>In this paper we present the dataset of 200,000+ political arguments produced in the local phase of the 2016 Chilean constitutional process. We describe the human processing of this data by the government officials, and the manual tagging of arguments performed by members of our research group. Afterwards we focus on classification tasks that mimic the human processes, comparing linear methods with neural network architectures. The experiments show that some of the manual tasks are suitable for automatization. In particular, the best methods achieve a 90% top-5 accuracy in a multi-class classification of arguments, and 65% macro-averaged F1-score for tagging arguments according to a three-part argumentation model.</abstract>
    <identifier type="citekey">fierro-etal-2017-200k</identifier>
    <identifier type="doi">10.18653/v1/W17-5101</identifier>
    <location>
        <url>https://aclanthology.org/W17-5101/</url>
    </location>
    <part>
        <date>2017-09</date>
        <extent unit="page">
            <start>1</start>
            <end>10</end>
        </extent>
    </part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T 200K+ Crowdsourced Political Arguments for a New Chilean Constitution
%A Fierro, Constanza
%A Fuentes, Claudio
%A Pérez, Jorge
%A Quezada, Mauricio
%Y Habernal, Ivan
%Y Gurevych, Iryna
%Y Ashley, Kevin
%Y Cardie, Claire
%Y Green, Nancy
%Y Litman, Diane
%Y Petasis, Georgios
%Y Reed, Chris
%Y Slonim, Noam
%Y Walker, Vern
%S Proceedings of the 4th Workshop on Argument Mining
%D 2017
%8 September
%I Association for Computational Linguistics
%C Copenhagen, Denmark
%F fierro-etal-2017-200k
%X In this paper we present the dataset of 200,000+ political arguments produced in the local phase of the 2016 Chilean constitutional process. We describe the human processing of this data by the government officials, and the manual tagging of arguments performed by members of our research group. Afterwards we focus on classification tasks that mimic the human processes, comparing linear methods with neural network architectures. The experiments show that some of the manual tasks are suitable for automatization. In particular, the best methods achieve a 90% top-5 accuracy in a multi-class classification of arguments, and 65% macro-averaged F1-score for tagging arguments according to a three-part argumentation model.
%R 10.18653/v1/W17-5101
%U https://aclanthology.org/W17-5101/
%U https://doi.org/10.18653/v1/W17-5101
%P 1-10
Markdown (Informal)
[200K+ Crowdsourced Political Arguments for a New Chilean Constitution](https://aclanthology.org/W17-5101/) (Fierro et al., ArgMining 2017)
ACL