@inproceedings{schuff-etal-2017-annotation,
title = "Annotation, Modelling and Analysis of Fine-Grained Emotions on a Stance and Sentiment Detection Corpus",
author = "Schuff, Hendrik and
Barnes, Jeremy and
Mohme, Julian and
Pad{\'o}, Sebastian and
Klinger, Roman",
editor = "Balahur, Alexandra and
Mohammad, Saif M. and
van der Goot, Erik",
booktitle = "Proceedings of the 8th Workshop on Computational Approaches to Subjectivity, Sentiment and Social Media Analysis",
month = sep,
year = "2017",
address = "Copenhagen, Denmark",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/W17-5203/",
doi = "10.18653/v1/W17-5203",
pages = "13--23",
abstract = "There is a rich variety of data sets for sentiment analysis (viz., polarity and subjectivity classification). For the more challenging task of detecting discrete emotions following the definitions of Ekman and Plutchik, however, there are much fewer data sets, and notably no resources for the social media domain. This paper contributes to closing this gap by extending the \textit{SemEval 2016 stance and sentiment dataset}with emotion annotation. We (a) analyse annotation reliability and annotation merging; (b) investigate the relation between emotion annotation and the other annotation layers (stance, sentiment); (c) report modelling results as a baseline for future work."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="schuff-etal-2017-annotation">
<titleInfo>
<title>Annotation, Modelling and Analysis of Fine-Grained Emotions on a Stance and Sentiment Detection Corpus</title>
</titleInfo>
<name type="personal">
<namePart type="given">Hendrik</namePart>
<namePart type="family">Schuff</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jeremy</namePart>
<namePart type="family">Barnes</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Julian</namePart>
<namePart type="family">Mohme</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sebastian</namePart>
<namePart type="family">Padó</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Roman</namePart>
<namePart type="family">Klinger</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2017-09</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 8th Workshop on Computational Approaches to Subjectivity, Sentiment and Social Media Analysis</title>
</titleInfo>
<name type="personal">
<namePart type="given">Alexandra</namePart>
<namePart type="family">Balahur</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Saif</namePart>
<namePart type="given">M</namePart>
<namePart type="family">Mohammad</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Erik</namePart>
<namePart type="family">van der Goot</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Copenhagen, Denmark</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>There is a rich variety of data sets for sentiment analysis (viz., polarity and subjectivity classification). For the more challenging task of detecting discrete emotions following the definitions of Ekman and Plutchik, however, there are much fewer data sets, and notably no resources for the social media domain. This paper contributes to closing this gap by extending the SemEval 2016 stance and sentiment datasetwith emotion annotation. We (a) analyse annotation reliability and annotation merging; (b) investigate the relation between emotion annotation and the other annotation layers (stance, sentiment); (c) report modelling results as a baseline for future work.</abstract>
<identifier type="citekey">schuff-etal-2017-annotation</identifier>
<identifier type="doi">10.18653/v1/W17-5203</identifier>
<location>
<url>https://aclanthology.org/W17-5203/</url>
</location>
<part>
<date>2017-09</date>
<extent unit="page">
<start>13</start>
<end>23</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Annotation, Modelling and Analysis of Fine-Grained Emotions on a Stance and Sentiment Detection Corpus
%A Schuff, Hendrik
%A Barnes, Jeremy
%A Mohme, Julian
%A Padó, Sebastian
%A Klinger, Roman
%Y Balahur, Alexandra
%Y Mohammad, Saif M.
%Y van der Goot, Erik
%S Proceedings of the 8th Workshop on Computational Approaches to Subjectivity, Sentiment and Social Media Analysis
%D 2017
%8 September
%I Association for Computational Linguistics
%C Copenhagen, Denmark
%F schuff-etal-2017-annotation
%X There is a rich variety of data sets for sentiment analysis (viz., polarity and subjectivity classification). For the more challenging task of detecting discrete emotions following the definitions of Ekman and Plutchik, however, there are much fewer data sets, and notably no resources for the social media domain. This paper contributes to closing this gap by extending the SemEval 2016 stance and sentiment datasetwith emotion annotation. We (a) analyse annotation reliability and annotation merging; (b) investigate the relation between emotion annotation and the other annotation layers (stance, sentiment); (c) report modelling results as a baseline for future work.
%R 10.18653/v1/W17-5203
%U https://aclanthology.org/W17-5203/
%U https://doi.org/10.18653/v1/W17-5203
%P 13-23
Markdown (Informal)
[Annotation, Modelling and Analysis of Fine-Grained Emotions on a Stance and Sentiment Detection Corpus](https://aclanthology.org/W17-5203/) (Schuff et al., WASSA 2017)
ACL