@inproceedings{donato-paggio-2017-investigating,
title = "Investigating Redundancy in Emoji Use: Study on a {T}witter Based Corpus",
author = "Donato, Giulia and
Paggio, Patrizia",
editor = "Balahur, Alexandra and
Mohammad, Saif M. and
van der Goot, Erik",
booktitle = "Proceedings of the 8th Workshop on Computational Approaches to Subjectivity, Sentiment and Social Media Analysis",
month = sep,
year = "2017",
address = "Copenhagen, Denmark",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/W17-5216",
doi = "10.18653/v1/W17-5216",
pages = "118--126",
abstract = "In this paper we present an annotated corpus created with the aim of analyzing the informative behaviour of emoji {--} an issue of importance for sentiment analysis and natural language processing. The corpus consists of 2475 tweets all containing at least one emoji, which has been annotated using one of the three possible classes: Redundant, Non Redundant, and Non Redundant + POS. We explain how the corpus was collected, describe the annotation procedure and the interface developed for the task. We provide an analysis of the corpus, considering also possible predictive features, discuss the problematic aspects of the annotation, and suggest future improvements.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="donato-paggio-2017-investigating">
<titleInfo>
<title>Investigating Redundancy in Emoji Use: Study on a Twitter Based Corpus</title>
</titleInfo>
<name type="personal">
<namePart type="given">Giulia</namePart>
<namePart type="family">Donato</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Patrizia</namePart>
<namePart type="family">Paggio</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2017-09</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 8th Workshop on Computational Approaches to Subjectivity, Sentiment and Social Media Analysis</title>
</titleInfo>
<name type="personal">
<namePart type="given">Alexandra</namePart>
<namePart type="family">Balahur</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Saif</namePart>
<namePart type="given">M</namePart>
<namePart type="family">Mohammad</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Erik</namePart>
<namePart type="family">van der Goot</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Copenhagen, Denmark</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>In this paper we present an annotated corpus created with the aim of analyzing the informative behaviour of emoji – an issue of importance for sentiment analysis and natural language processing. The corpus consists of 2475 tweets all containing at least one emoji, which has been annotated using one of the three possible classes: Redundant, Non Redundant, and Non Redundant + POS. We explain how the corpus was collected, describe the annotation procedure and the interface developed for the task. We provide an analysis of the corpus, considering also possible predictive features, discuss the problematic aspects of the annotation, and suggest future improvements.</abstract>
<identifier type="citekey">donato-paggio-2017-investigating</identifier>
<identifier type="doi">10.18653/v1/W17-5216</identifier>
<location>
<url>https://aclanthology.org/W17-5216</url>
</location>
<part>
<date>2017-09</date>
<extent unit="page">
<start>118</start>
<end>126</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Investigating Redundancy in Emoji Use: Study on a Twitter Based Corpus
%A Donato, Giulia
%A Paggio, Patrizia
%Y Balahur, Alexandra
%Y Mohammad, Saif M.
%Y van der Goot, Erik
%S Proceedings of the 8th Workshop on Computational Approaches to Subjectivity, Sentiment and Social Media Analysis
%D 2017
%8 September
%I Association for Computational Linguistics
%C Copenhagen, Denmark
%F donato-paggio-2017-investigating
%X In this paper we present an annotated corpus created with the aim of analyzing the informative behaviour of emoji – an issue of importance for sentiment analysis and natural language processing. The corpus consists of 2475 tweets all containing at least one emoji, which has been annotated using one of the three possible classes: Redundant, Non Redundant, and Non Redundant + POS. We explain how the corpus was collected, describe the annotation procedure and the interface developed for the task. We provide an analysis of the corpus, considering also possible predictive features, discuss the problematic aspects of the annotation, and suggest future improvements.
%R 10.18653/v1/W17-5216
%U https://aclanthology.org/W17-5216
%U https://doi.org/10.18653/v1/W17-5216
%P 118-126
Markdown (Informal)
[Investigating Redundancy in Emoji Use: Study on a Twitter Based Corpus](https://aclanthology.org/W17-5216) (Donato & Paggio, WASSA 2017)
ACL