@inproceedings{andryushechkin-etal-2017-nuig,
title = "{NUIG} at {E}mo{I}nt-2017: {B}i{LSTM} and {SVR} Ensemble to Detect Emotion Intensity",
author = "Andryushechkin, Vladimir and
Wood, Ian and
O{'} Neill, James",
editor = "Balahur, Alexandra and
Mohammad, Saif M. and
van der Goot, Erik",
booktitle = "Proceedings of the 8th Workshop on Computational Approaches to Subjectivity, Sentiment and Social Media Analysis",
month = sep,
year = "2017",
address = "Copenhagen, Denmark",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/W17-5223",
doi = "10.18653/v1/W17-5223",
pages = "175--179",
abstract = "This paper describes the entry NUIG in the WASSA 2017 (8th Workshop on Computational Approaches to Subjectivity, Sentiment {\&} Social Media Analysis) shared task on emotion recognition. The NUIG system used an SVR (SVM regression) and BLSTM ensemble, utilizing primarily n-grams (for SVR features) and tweet word embeddings (for BLSTM features). Experiments were carried out on several other candidate features, some of which were added to the SVR model. Parameter selection for the SVR model was run as a grid search whilst parameters for the BLSTM model were selected through a non-exhaustive ad-hoc search.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="andryushechkin-etal-2017-nuig">
<titleInfo>
<title>NUIG at EmoInt-2017: BiLSTM and SVR Ensemble to Detect Emotion Intensity</title>
</titleInfo>
<name type="personal">
<namePart type="given">Vladimir</namePart>
<namePart type="family">Andryushechkin</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ian</namePart>
<namePart type="family">Wood</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">James</namePart>
<namePart type="family">O’ Neill</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2017-09</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 8th Workshop on Computational Approaches to Subjectivity, Sentiment and Social Media Analysis</title>
</titleInfo>
<name type="personal">
<namePart type="given">Alexandra</namePart>
<namePart type="family">Balahur</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Saif</namePart>
<namePart type="given">M</namePart>
<namePart type="family">Mohammad</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Erik</namePart>
<namePart type="family">van der Goot</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Copenhagen, Denmark</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>This paper describes the entry NUIG in the WASSA 2017 (8th Workshop on Computational Approaches to Subjectivity, Sentiment & Social Media Analysis) shared task on emotion recognition. The NUIG system used an SVR (SVM regression) and BLSTM ensemble, utilizing primarily n-grams (for SVR features) and tweet word embeddings (for BLSTM features). Experiments were carried out on several other candidate features, some of which were added to the SVR model. Parameter selection for the SVR model was run as a grid search whilst parameters for the BLSTM model were selected through a non-exhaustive ad-hoc search.</abstract>
<identifier type="citekey">andryushechkin-etal-2017-nuig</identifier>
<identifier type="doi">10.18653/v1/W17-5223</identifier>
<location>
<url>https://aclanthology.org/W17-5223</url>
</location>
<part>
<date>2017-09</date>
<extent unit="page">
<start>175</start>
<end>179</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T NUIG at EmoInt-2017: BiLSTM and SVR Ensemble to Detect Emotion Intensity
%A Andryushechkin, Vladimir
%A Wood, Ian
%A O’ Neill, James
%Y Balahur, Alexandra
%Y Mohammad, Saif M.
%Y van der Goot, Erik
%S Proceedings of the 8th Workshop on Computational Approaches to Subjectivity, Sentiment and Social Media Analysis
%D 2017
%8 September
%I Association for Computational Linguistics
%C Copenhagen, Denmark
%F andryushechkin-etal-2017-nuig
%X This paper describes the entry NUIG in the WASSA 2017 (8th Workshop on Computational Approaches to Subjectivity, Sentiment & Social Media Analysis) shared task on emotion recognition. The NUIG system used an SVR (SVM regression) and BLSTM ensemble, utilizing primarily n-grams (for SVR features) and tweet word embeddings (for BLSTM features). Experiments were carried out on several other candidate features, some of which were added to the SVR model. Parameter selection for the SVR model was run as a grid search whilst parameters for the BLSTM model were selected through a non-exhaustive ad-hoc search.
%R 10.18653/v1/W17-5223
%U https://aclanthology.org/W17-5223
%U https://doi.org/10.18653/v1/W17-5223
%P 175-179
Markdown (Informal)
[NUIG at EmoInt-2017: BiLSTM and SVR Ensemble to Detect Emotion Intensity](https://aclanthology.org/W17-5223) (Andryushechkin et al., WASSA 2017)
ACL