@inproceedings{meisheri-etal-2017-textmining,
    title = "Textmining at {E}mo{I}nt-2017: A Deep Learning Approach to Sentiment Intensity Scoring of {E}nglish Tweets",
    author = "Meisheri, Hardik  and
      Saha, Rupsa  and
      Sinha, Priyanka  and
      Dey, Lipika",
    editor = "Balahur, Alexandra  and
      Mohammad, Saif M.  and
      van der Goot, Erik",
    booktitle = "Proceedings of the 8th Workshop on Computational Approaches to Subjectivity, Sentiment and Social Media Analysis",
    month = sep,
    year = "2017",
    address = "Copenhagen, Denmark",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/W17-5226/",
    doi = "10.18653/v1/W17-5226",
    pages = "193--199",
    abstract = "This paper describes our approach to the Emotion Intensity shared task. A parallel architecture of Convolutional Neural Network (CNN) and Long short term memory networks (LSTM) alongwith two sets of features are extracted which aid the network in judging emotion intensity. Experiments on different models and various features sets are described and analysis on results has also been presented."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="meisheri-etal-2017-textmining">
    <titleInfo>
        <title>Textmining at EmoInt-2017: A Deep Learning Approach to Sentiment Intensity Scoring of English Tweets</title>
    </titleInfo>
    <name type="personal">
        <namePart type="given">Hardik</namePart>
        <namePart type="family">Meisheri</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Rupsa</namePart>
        <namePart type="family">Saha</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Priyanka</namePart>
        <namePart type="family">Sinha</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Lipika</namePart>
        <namePart type="family">Dey</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <originInfo>
        <dateIssued>2017-09</dateIssued>
    </originInfo>
    <typeOfResource>text</typeOfResource>
    <relatedItem type="host">
        <titleInfo>
            <title>Proceedings of the 8th Workshop on Computational Approaches to Subjectivity, Sentiment and Social Media Analysis</title>
        </titleInfo>
        <name type="personal">
            <namePart type="given">Alexandra</namePart>
            <namePart type="family">Balahur</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Saif</namePart>
            <namePart type="given">M</namePart>
            <namePart type="family">Mohammad</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Erik</namePart>
            <namePart type="family">van der Goot</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <originInfo>
            <publisher>Association for Computational Linguistics</publisher>
            <place>
                <placeTerm type="text">Copenhagen, Denmark</placeTerm>
            </place>
        </originInfo>
        <genre authority="marcgt">conference publication</genre>
    </relatedItem>
    <abstract>This paper describes our approach to the Emotion Intensity shared task. A parallel architecture of Convolutional Neural Network (CNN) and Long short term memory networks (LSTM) alongwith two sets of features are extracted which aid the network in judging emotion intensity. Experiments on different models and various features sets are described and analysis on results has also been presented.</abstract>
    <identifier type="citekey">meisheri-etal-2017-textmining</identifier>
    <identifier type="doi">10.18653/v1/W17-5226</identifier>
    <location>
        <url>https://aclanthology.org/W17-5226/</url>
    </location>
    <part>
        <date>2017-09</date>
        <extent unit="page">
            <start>193</start>
            <end>199</end>
        </extent>
    </part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Textmining at EmoInt-2017: A Deep Learning Approach to Sentiment Intensity Scoring of English Tweets
%A Meisheri, Hardik
%A Saha, Rupsa
%A Sinha, Priyanka
%A Dey, Lipika
%Y Balahur, Alexandra
%Y Mohammad, Saif M.
%Y van der Goot, Erik
%S Proceedings of the 8th Workshop on Computational Approaches to Subjectivity, Sentiment and Social Media Analysis
%D 2017
%8 September
%I Association for Computational Linguistics
%C Copenhagen, Denmark
%F meisheri-etal-2017-textmining
%X This paper describes our approach to the Emotion Intensity shared task. A parallel architecture of Convolutional Neural Network (CNN) and Long short term memory networks (LSTM) alongwith two sets of features are extracted which aid the network in judging emotion intensity. Experiments on different models and various features sets are described and analysis on results has also been presented.
%R 10.18653/v1/W17-5226
%U https://aclanthology.org/W17-5226/
%U https://doi.org/10.18653/v1/W17-5226
%P 193-199
Markdown (Informal)
[Textmining at EmoInt-2017: A Deep Learning Approach to Sentiment Intensity Scoring of English Tweets](https://aclanthology.org/W17-5226/) (Meisheri et al., WASSA 2017)
ACL