@inproceedings{duppada-hiray-2017-seernet,
title = "Seernet at {E}mo{I}nt-2017: Tweet Emotion Intensity Estimator",
author = "Duppada, Venkatesh and
Hiray, Sushant",
editor = "Balahur, Alexandra and
Mohammad, Saif M. and
van der Goot, Erik",
booktitle = "Proceedings of the 8th Workshop on Computational Approaches to Subjectivity, Sentiment and Social Media Analysis",
month = sep,
year = "2017",
address = "Copenhagen, Denmark",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/W17-5228/",
doi = "10.18653/v1/W17-5228",
pages = "205--211",
abstract = "The paper describes experiments on estimating emotion intensity in tweets using a generalized regressor system. The system combines various independent feature extractors, trains them on general regressors and finally combines the best performing models to create an ensemble. The proposed system stood 3rd out of 22 systems in leaderboard of WASSA-2017 Shared Task on Emotion Intensity."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="duppada-hiray-2017-seernet">
<titleInfo>
<title>Seernet at EmoInt-2017: Tweet Emotion Intensity Estimator</title>
</titleInfo>
<name type="personal">
<namePart type="given">Venkatesh</namePart>
<namePart type="family">Duppada</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sushant</namePart>
<namePart type="family">Hiray</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2017-09</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 8th Workshop on Computational Approaches to Subjectivity, Sentiment and Social Media Analysis</title>
</titleInfo>
<name type="personal">
<namePart type="given">Alexandra</namePart>
<namePart type="family">Balahur</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Saif</namePart>
<namePart type="given">M</namePart>
<namePart type="family">Mohammad</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Erik</namePart>
<namePart type="family">van der Goot</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Copenhagen, Denmark</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>The paper describes experiments on estimating emotion intensity in tweets using a generalized regressor system. The system combines various independent feature extractors, trains them on general regressors and finally combines the best performing models to create an ensemble. The proposed system stood 3rd out of 22 systems in leaderboard of WASSA-2017 Shared Task on Emotion Intensity.</abstract>
<identifier type="citekey">duppada-hiray-2017-seernet</identifier>
<identifier type="doi">10.18653/v1/W17-5228</identifier>
<location>
<url>https://aclanthology.org/W17-5228/</url>
</location>
<part>
<date>2017-09</date>
<extent unit="page">
<start>205</start>
<end>211</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Seernet at EmoInt-2017: Tweet Emotion Intensity Estimator
%A Duppada, Venkatesh
%A Hiray, Sushant
%Y Balahur, Alexandra
%Y Mohammad, Saif M.
%Y van der Goot, Erik
%S Proceedings of the 8th Workshop on Computational Approaches to Subjectivity, Sentiment and Social Media Analysis
%D 2017
%8 September
%I Association for Computational Linguistics
%C Copenhagen, Denmark
%F duppada-hiray-2017-seernet
%X The paper describes experiments on estimating emotion intensity in tweets using a generalized regressor system. The system combines various independent feature extractors, trains them on general regressors and finally combines the best performing models to create an ensemble. The proposed system stood 3rd out of 22 systems in leaderboard of WASSA-2017 Shared Task on Emotion Intensity.
%R 10.18653/v1/W17-5228
%U https://aclanthology.org/W17-5228/
%U https://doi.org/10.18653/v1/W17-5228
%P 205-211
Markdown (Informal)
[Seernet at EmoInt-2017: Tweet Emotion Intensity Estimator](https://aclanthology.org/W17-5228/) (Duppada & Hiray, WASSA 2017)
ACL
- Venkatesh Duppada and Sushant Hiray. 2017. Seernet at EmoInt-2017: Tweet Emotion Intensity Estimator. In Proceedings of the 8th Workshop on Computational Approaches to Subjectivity, Sentiment and Social Media Analysis, pages 205–211, Copenhagen, Denmark. Association for Computational Linguistics.