@inproceedings{gulati-agrawal-2017-playing,
title = "Playing with Embeddings : Evaluating embeddings for Robot Language Learning through {MUD} Games",
author = "Gulati, Anmol and
Agrawal, Kumar Krishna",
editor = "Bowman, Samuel and
Goldberg, Yoav and
Hill, Felix and
Lazaridou, Angeliki and
Levy, Omer and
Reichart, Roi and
S\o gaard, Anders",
booktitle = "Proceedings of the 2nd Workshop on Evaluating Vector Space Representations for {NLP}",
month = sep,
year = "2017",
address = "Copenhagen, Denmark",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/W17-5305/",
doi = "10.18653/v1/W17-5305",
pages = "27--30",
abstract = "Acquiring language provides a ubiquitous mode of communication, across humans and robots. To this effect, distributional representations of words based on co-occurrence statistics, have provided significant advancements ranging across machine translation to comprehension. In this paper, we study the suitability of using general purpose word-embeddings for language learning in robots. We propose using text-based games as a proxy to evaluating word embedding on real robots. Based in a risk-reward setting, we review the effectiveness of the embeddings in navigating tasks in fantasy games, as an approximation to their performance on more complex scenarios, like language assisted robot navigation."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="gulati-agrawal-2017-playing">
<titleInfo>
<title>Playing with Embeddings : Evaluating embeddings for Robot Language Learning through MUD Games</title>
</titleInfo>
<name type="personal">
<namePart type="given">Anmol</namePart>
<namePart type="family">Gulati</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kumar</namePart>
<namePart type="given">Krishna</namePart>
<namePart type="family">Agrawal</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2017-09</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2nd Workshop on Evaluating Vector Space Representations for NLP</title>
</titleInfo>
<name type="personal">
<namePart type="given">Samuel</namePart>
<namePart type="family">Bowman</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yoav</namePart>
<namePart type="family">Goldberg</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Felix</namePart>
<namePart type="family">Hill</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Angeliki</namePart>
<namePart type="family">Lazaridou</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Omer</namePart>
<namePart type="family">Levy</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Roi</namePart>
<namePart type="family">Reichart</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Anders</namePart>
<namePart type="family">Sø gaard</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Copenhagen, Denmark</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Acquiring language provides a ubiquitous mode of communication, across humans and robots. To this effect, distributional representations of words based on co-occurrence statistics, have provided significant advancements ranging across machine translation to comprehension. In this paper, we study the suitability of using general purpose word-embeddings for language learning in robots. We propose using text-based games as a proxy to evaluating word embedding on real robots. Based in a risk-reward setting, we review the effectiveness of the embeddings in navigating tasks in fantasy games, as an approximation to their performance on more complex scenarios, like language assisted robot navigation.</abstract>
<identifier type="citekey">gulati-agrawal-2017-playing</identifier>
<identifier type="doi">10.18653/v1/W17-5305</identifier>
<location>
<url>https://aclanthology.org/W17-5305/</url>
</location>
<part>
<date>2017-09</date>
<extent unit="page">
<start>27</start>
<end>30</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Playing with Embeddings : Evaluating embeddings for Robot Language Learning through MUD Games
%A Gulati, Anmol
%A Agrawal, Kumar Krishna
%Y Bowman, Samuel
%Y Goldberg, Yoav
%Y Hill, Felix
%Y Lazaridou, Angeliki
%Y Levy, Omer
%Y Reichart, Roi
%Y Sø gaard, Anders
%S Proceedings of the 2nd Workshop on Evaluating Vector Space Representations for NLP
%D 2017
%8 September
%I Association for Computational Linguistics
%C Copenhagen, Denmark
%F gulati-agrawal-2017-playing
%X Acquiring language provides a ubiquitous mode of communication, across humans and robots. To this effect, distributional representations of words based on co-occurrence statistics, have provided significant advancements ranging across machine translation to comprehension. In this paper, we study the suitability of using general purpose word-embeddings for language learning in robots. We propose using text-based games as a proxy to evaluating word embedding on real robots. Based in a risk-reward setting, we review the effectiveness of the embeddings in navigating tasks in fantasy games, as an approximation to their performance on more complex scenarios, like language assisted robot navigation.
%R 10.18653/v1/W17-5305
%U https://aclanthology.org/W17-5305/
%U https://doi.org/10.18653/v1/W17-5305
%P 27-30
Markdown (Informal)
[Playing with Embeddings : Evaluating embeddings for Robot Language Learning through MUD Games](https://aclanthology.org/W17-5305/) (Gulati & Agrawal, RepEval 2017)
ACL