@inproceedings{jurczyk-choi-2017-cross,
title = "Cross-genre Document Retrieval: Matching between Conversational and Formal Writings",
author = "Jurczyk, Tomasz and
Choi, Jinho D.",
editor = "Bender, Emily and
Daum{\'e} III, Hal and
Ettinger, Allyson and
Rao, Sudha",
booktitle = "Proceedings of the First Workshop on Building Linguistically Generalizable {NLP} Systems",
month = sep,
year = "2017",
address = "Copenhagen, Denmark",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/W17-5407/",
doi = "10.18653/v1/W17-5407",
pages = "48--53",
abstract = "This paper challenges a cross-genre document retrieval task, where the queries are in formal writing and the target documents are in conversational writing. In this task, a query, is a sentence extracted from either a summary or a plot of an episode in a TV show, and the target document consists of transcripts from the corresponding episode. To establish a strong baseline, we employ the current state-of-the-art search engine to perform document retrieval on the dataset collected for this work. We then introduce a structure reranking approach to improve the initial ranking by utilizing syntactic and semantic structures generated by NLP tools. Our evaluation shows an improvement of more than 4{\%} when the structure reranking is applied, which is very promising."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="jurczyk-choi-2017-cross">
<titleInfo>
<title>Cross-genre Document Retrieval: Matching between Conversational and Formal Writings</title>
</titleInfo>
<name type="personal">
<namePart type="given">Tomasz</namePart>
<namePart type="family">Jurczyk</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jinho</namePart>
<namePart type="given">D</namePart>
<namePart type="family">Choi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2017-09</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the First Workshop on Building Linguistically Generalizable NLP Systems</title>
</titleInfo>
<name type="personal">
<namePart type="given">Emily</namePart>
<namePart type="family">Bender</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hal</namePart>
<namePart type="family">Daumé III</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Allyson</namePart>
<namePart type="family">Ettinger</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sudha</namePart>
<namePart type="family">Rao</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Copenhagen, Denmark</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>This paper challenges a cross-genre document retrieval task, where the queries are in formal writing and the target documents are in conversational writing. In this task, a query, is a sentence extracted from either a summary or a plot of an episode in a TV show, and the target document consists of transcripts from the corresponding episode. To establish a strong baseline, we employ the current state-of-the-art search engine to perform document retrieval on the dataset collected for this work. We then introduce a structure reranking approach to improve the initial ranking by utilizing syntactic and semantic structures generated by NLP tools. Our evaluation shows an improvement of more than 4% when the structure reranking is applied, which is very promising.</abstract>
<identifier type="citekey">jurczyk-choi-2017-cross</identifier>
<identifier type="doi">10.18653/v1/W17-5407</identifier>
<location>
<url>https://aclanthology.org/W17-5407/</url>
</location>
<part>
<date>2017-09</date>
<extent unit="page">
<start>48</start>
<end>53</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Cross-genre Document Retrieval: Matching between Conversational and Formal Writings
%A Jurczyk, Tomasz
%A Choi, Jinho D.
%Y Bender, Emily
%Y Daumé III, Hal
%Y Ettinger, Allyson
%Y Rao, Sudha
%S Proceedings of the First Workshop on Building Linguistically Generalizable NLP Systems
%D 2017
%8 September
%I Association for Computational Linguistics
%C Copenhagen, Denmark
%F jurczyk-choi-2017-cross
%X This paper challenges a cross-genre document retrieval task, where the queries are in formal writing and the target documents are in conversational writing. In this task, a query, is a sentence extracted from either a summary or a plot of an episode in a TV show, and the target document consists of transcripts from the corresponding episode. To establish a strong baseline, we employ the current state-of-the-art search engine to perform document retrieval on the dataset collected for this work. We then introduce a structure reranking approach to improve the initial ranking by utilizing syntactic and semantic structures generated by NLP tools. Our evaluation shows an improvement of more than 4% when the structure reranking is applied, which is very promising.
%R 10.18653/v1/W17-5407
%U https://aclanthology.org/W17-5407/
%U https://doi.org/10.18653/v1/W17-5407
%P 48-53
Markdown (Informal)
[Cross-genre Document Retrieval: Matching between Conversational and Formal Writings](https://aclanthology.org/W17-5407/) (Jurczyk & Choi, 2017)
ACL