@inproceedings{krause-etal-2017-redundancy,
title = "Redundancy Localization for the Conversationalization of Unstructured Responses",
author = "Krause, Sebastian and
Kozhevnikov, Mikhail and
Malmi, Eric and
Pighin, Daniele",
editor = "Jokinen, Kristiina and
Stede, Manfred and
DeVault, David and
Louis, Annie",
booktitle = "Proceedings of the 18th Annual {SIG}dial Meeting on Discourse and Dialogue",
month = aug,
year = "2017",
address = {Saarbr{\"u}cken, Germany},
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/W17-5515/",
doi = "10.18653/v1/W17-5515",
pages = "115--126",
abstract = "Conversational agents offer users a natural-language interface to accomplish tasks, entertain themselves, or access information. Informational dialogue is particularly challenging in that the agent has to hold a conversation on an open topic, and to achieve a reasonable coverage it generally needs to digest and present unstructured information from textual sources. Making responses based on such sources sound natural and fit appropriately into the conversation context is a topic of ongoing research, one of the key issues of which is preventing the agent`s responses from sounding repetitive. Targeting this issue, we propose a new task, known as redundancy localization, which aims to pinpoint semantic overlap between text passages. To help address it systematically, we formalize the task, prepare a public dataset with fine-grained redundancy labels, and propose a model utilizing a weak training signal defined over the results of a passage-retrieval system on web texts. The proposed model demonstrates superior performance compared to a state-of-the-art entailment model and yields encouraging results when applied to a real-world dialogue."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="krause-etal-2017-redundancy">
<titleInfo>
<title>Redundancy Localization for the Conversationalization of Unstructured Responses</title>
</titleInfo>
<name type="personal">
<namePart type="given">Sebastian</namePart>
<namePart type="family">Krause</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mikhail</namePart>
<namePart type="family">Kozhevnikov</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Eric</namePart>
<namePart type="family">Malmi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Daniele</namePart>
<namePart type="family">Pighin</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2017-08</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 18th Annual SIGdial Meeting on Discourse and Dialogue</title>
</titleInfo>
<name type="personal">
<namePart type="given">Kristiina</namePart>
<namePart type="family">Jokinen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Manfred</namePart>
<namePart type="family">Stede</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">David</namePart>
<namePart type="family">DeVault</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Annie</namePart>
<namePart type="family">Louis</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Saarbrücken, Germany</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Conversational agents offer users a natural-language interface to accomplish tasks, entertain themselves, or access information. Informational dialogue is particularly challenging in that the agent has to hold a conversation on an open topic, and to achieve a reasonable coverage it generally needs to digest and present unstructured information from textual sources. Making responses based on such sources sound natural and fit appropriately into the conversation context is a topic of ongoing research, one of the key issues of which is preventing the agent‘s responses from sounding repetitive. Targeting this issue, we propose a new task, known as redundancy localization, which aims to pinpoint semantic overlap between text passages. To help address it systematically, we formalize the task, prepare a public dataset with fine-grained redundancy labels, and propose a model utilizing a weak training signal defined over the results of a passage-retrieval system on web texts. The proposed model demonstrates superior performance compared to a state-of-the-art entailment model and yields encouraging results when applied to a real-world dialogue.</abstract>
<identifier type="citekey">krause-etal-2017-redundancy</identifier>
<identifier type="doi">10.18653/v1/W17-5515</identifier>
<location>
<url>https://aclanthology.org/W17-5515/</url>
</location>
<part>
<date>2017-08</date>
<extent unit="page">
<start>115</start>
<end>126</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Redundancy Localization for the Conversationalization of Unstructured Responses
%A Krause, Sebastian
%A Kozhevnikov, Mikhail
%A Malmi, Eric
%A Pighin, Daniele
%Y Jokinen, Kristiina
%Y Stede, Manfred
%Y DeVault, David
%Y Louis, Annie
%S Proceedings of the 18th Annual SIGdial Meeting on Discourse and Dialogue
%D 2017
%8 August
%I Association for Computational Linguistics
%C Saarbrücken, Germany
%F krause-etal-2017-redundancy
%X Conversational agents offer users a natural-language interface to accomplish tasks, entertain themselves, or access information. Informational dialogue is particularly challenging in that the agent has to hold a conversation on an open topic, and to achieve a reasonable coverage it generally needs to digest and present unstructured information from textual sources. Making responses based on such sources sound natural and fit appropriately into the conversation context is a topic of ongoing research, one of the key issues of which is preventing the agent‘s responses from sounding repetitive. Targeting this issue, we propose a new task, known as redundancy localization, which aims to pinpoint semantic overlap between text passages. To help address it systematically, we formalize the task, prepare a public dataset with fine-grained redundancy labels, and propose a model utilizing a weak training signal defined over the results of a passage-retrieval system on web texts. The proposed model demonstrates superior performance compared to a state-of-the-art entailment model and yields encouraging results when applied to a real-world dialogue.
%R 10.18653/v1/W17-5515
%U https://aclanthology.org/W17-5515/
%U https://doi.org/10.18653/v1/W17-5515
%P 115-126
Markdown (Informal)
[Redundancy Localization for the Conversationalization of Unstructured Responses](https://aclanthology.org/W17-5515/) (Krause et al., SIGDIAL 2017)
ACL