@inproceedings{tran-etal-2017-neural,
title = "Neural-based Natural Language Generation in Dialogue using {RNN} Encoder-Decoder with Semantic Aggregation",
author = "Tran, Van-Khanh and
Nguyen, Le-Minh and
Tojo, Satoshi",
editor = "Jokinen, Kristiina and
Stede, Manfred and
DeVault, David and
Louis, Annie",
booktitle = "Proceedings of the 18th Annual {SIG}dial Meeting on Discourse and Dialogue",
month = aug,
year = "2017",
address = {Saarbr{\"u}cken, Germany},
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/W17-5528/",
doi = "10.18653/v1/W17-5528",
pages = "231--240",
abstract = "Natural language generation (NLG) is an important component in spoken dialogue systems. This paper presents a model called Encoder-Aggregator-Decoder which is an extension of an Recurrent Neural Network based Encoder-Decoder architecture. The proposed Semantic Aggregator consists of two components: an Aligner and a Refiner. The Aligner is a conventional attention calculated over the encoded input information, while the Refiner is another attention or gating mechanism stacked over the attentive Aligner in order to further select and aggregate the semantic elements. The proposed model can be jointly trained both sentence planning and surface realization to produce natural language utterances. The model was extensively assessed on four different NLG domains, in which the experimental results showed that the proposed generator consistently outperforms the previous methods on all the NLG domains."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="tran-etal-2017-neural">
<titleInfo>
<title>Neural-based Natural Language Generation in Dialogue using RNN Encoder-Decoder with Semantic Aggregation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Van-Khanh</namePart>
<namePart type="family">Tran</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Le-Minh</namePart>
<namePart type="family">Nguyen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Satoshi</namePart>
<namePart type="family">Tojo</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2017-08</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 18th Annual SIGdial Meeting on Discourse and Dialogue</title>
</titleInfo>
<name type="personal">
<namePart type="given">Kristiina</namePart>
<namePart type="family">Jokinen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Manfred</namePart>
<namePart type="family">Stede</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">David</namePart>
<namePart type="family">DeVault</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Annie</namePart>
<namePart type="family">Louis</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Saarbrücken, Germany</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Natural language generation (NLG) is an important component in spoken dialogue systems. This paper presents a model called Encoder-Aggregator-Decoder which is an extension of an Recurrent Neural Network based Encoder-Decoder architecture. The proposed Semantic Aggregator consists of two components: an Aligner and a Refiner. The Aligner is a conventional attention calculated over the encoded input information, while the Refiner is another attention or gating mechanism stacked over the attentive Aligner in order to further select and aggregate the semantic elements. The proposed model can be jointly trained both sentence planning and surface realization to produce natural language utterances. The model was extensively assessed on four different NLG domains, in which the experimental results showed that the proposed generator consistently outperforms the previous methods on all the NLG domains.</abstract>
<identifier type="citekey">tran-etal-2017-neural</identifier>
<identifier type="doi">10.18653/v1/W17-5528</identifier>
<location>
<url>https://aclanthology.org/W17-5528/</url>
</location>
<part>
<date>2017-08</date>
<extent unit="page">
<start>231</start>
<end>240</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Neural-based Natural Language Generation in Dialogue using RNN Encoder-Decoder with Semantic Aggregation
%A Tran, Van-Khanh
%A Nguyen, Le-Minh
%A Tojo, Satoshi
%Y Jokinen, Kristiina
%Y Stede, Manfred
%Y DeVault, David
%Y Louis, Annie
%S Proceedings of the 18th Annual SIGdial Meeting on Discourse and Dialogue
%D 2017
%8 August
%I Association for Computational Linguistics
%C Saarbrücken, Germany
%F tran-etal-2017-neural
%X Natural language generation (NLG) is an important component in spoken dialogue systems. This paper presents a model called Encoder-Aggregator-Decoder which is an extension of an Recurrent Neural Network based Encoder-Decoder architecture. The proposed Semantic Aggregator consists of two components: an Aligner and a Refiner. The Aligner is a conventional attention calculated over the encoded input information, while the Refiner is another attention or gating mechanism stacked over the attentive Aligner in order to further select and aggregate the semantic elements. The proposed model can be jointly trained both sentence planning and surface realization to produce natural language utterances. The model was extensively assessed on four different NLG domains, in which the experimental results showed that the proposed generator consistently outperforms the previous methods on all the NLG domains.
%R 10.18653/v1/W17-5528
%U https://aclanthology.org/W17-5528/
%U https://doi.org/10.18653/v1/W17-5528
%P 231-240
Markdown (Informal)
[Neural-based Natural Language Generation in Dialogue using RNN Encoder-Decoder with Semantic Aggregation](https://aclanthology.org/W17-5528/) (Tran et al., SIGDIAL 2017)
ACL