@inproceedings{bruni-fernandez-2017-adversarial,
title = "Adversarial evaluation for open-domain dialogue generation",
author = "Bruni, Elia and
Fern{\'a}ndez, Raquel",
editor = "Jokinen, Kristiina and
Stede, Manfred and
DeVault, David and
Louis, Annie",
booktitle = "Proceedings of the 18th Annual {SIG}dial Meeting on Discourse and Dialogue",
month = aug,
year = "2017",
address = {Saarbr{\"u}cken, Germany},
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/W17-5534/",
doi = "10.18653/v1/W17-5534",
pages = "284--288",
abstract = "We investigate the potential of adversarial evaluation methods for open-domain dialogue generation systems, comparing the performance of a discriminative agent to that of humans on the same task. Our results show that the task is hard, both for automated models and humans, but that a discriminative agent can learn patterns that lead to above-chance performance."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="bruni-fernandez-2017-adversarial">
<titleInfo>
<title>Adversarial evaluation for open-domain dialogue generation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Elia</namePart>
<namePart type="family">Bruni</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Raquel</namePart>
<namePart type="family">Fernández</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2017-08</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 18th Annual SIGdial Meeting on Discourse and Dialogue</title>
</titleInfo>
<name type="personal">
<namePart type="given">Kristiina</namePart>
<namePart type="family">Jokinen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Manfred</namePart>
<namePart type="family">Stede</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">David</namePart>
<namePart type="family">DeVault</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Annie</namePart>
<namePart type="family">Louis</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Saarbrücken, Germany</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We investigate the potential of adversarial evaluation methods for open-domain dialogue generation systems, comparing the performance of a discriminative agent to that of humans on the same task. Our results show that the task is hard, both for automated models and humans, but that a discriminative agent can learn patterns that lead to above-chance performance.</abstract>
<identifier type="citekey">bruni-fernandez-2017-adversarial</identifier>
<identifier type="doi">10.18653/v1/W17-5534</identifier>
<location>
<url>https://aclanthology.org/W17-5534/</url>
</location>
<part>
<date>2017-08</date>
<extent unit="page">
<start>284</start>
<end>288</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Adversarial evaluation for open-domain dialogue generation
%A Bruni, Elia
%A Fernández, Raquel
%Y Jokinen, Kristiina
%Y Stede, Manfred
%Y DeVault, David
%Y Louis, Annie
%S Proceedings of the 18th Annual SIGdial Meeting on Discourse and Dialogue
%D 2017
%8 August
%I Association for Computational Linguistics
%C Saarbrücken, Germany
%F bruni-fernandez-2017-adversarial
%X We investigate the potential of adversarial evaluation methods for open-domain dialogue generation systems, comparing the performance of a discriminative agent to that of humans on the same task. Our results show that the task is hard, both for automated models and humans, but that a discriminative agent can learn patterns that lead to above-chance performance.
%R 10.18653/v1/W17-5534
%U https://aclanthology.org/W17-5534/
%U https://doi.org/10.18653/v1/W17-5534
%P 284-288
Markdown (Informal)
[Adversarial evaluation for open-domain dialogue generation](https://aclanthology.org/W17-5534/) (Bruni & Fernández, SIGDIAL 2017)
ACL