@inproceedings{ehara-2017-smt,
title = "{SMT} reranked {NMT}",
author = "Ehara, Terumasa",
editor = "Nakazawa, Toshiaki and
Goto, Isao",
booktitle = "Proceedings of the 4th Workshop on {A}sian Translation ({WAT}2017)",
month = nov,
year = "2017",
address = "Taipei, Taiwan",
publisher = "Asian Federation of Natural Language Processing",
url = "https://aclanthology.org/W17-5710",
pages = "119--126",
abstract = "System architecture, experimental settings and experimental results of the EHR team for the WAT2017 tasks are described. We participate in three tasks: JPCen-ja, JPCzh-ja and JPCko-ja. Although the basic architecture of our system is NMT, reranking technique is conducted using SMT results. One of the major drawback of NMT is under-translation and over-translation. On the other hand, SMT infrequently makes such translations. So, using reranking of n-best NMT outputs by the SMT output, discarding such translations can be expected. We can improve BLEU score from 46.03 to 47.08 by this technique in JPCzh-ja task.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="ehara-2017-smt">
<titleInfo>
<title>SMT reranked NMT</title>
</titleInfo>
<name type="personal">
<namePart type="given">Terumasa</namePart>
<namePart type="family">Ehara</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2017-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 4th Workshop on Asian Translation (WAT2017)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Toshiaki</namePart>
<namePart type="family">Nakazawa</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Isao</namePart>
<namePart type="family">Goto</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Asian Federation of Natural Language Processing</publisher>
<place>
<placeTerm type="text">Taipei, Taiwan</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>System architecture, experimental settings and experimental results of the EHR team for the WAT2017 tasks are described. We participate in three tasks: JPCen-ja, JPCzh-ja and JPCko-ja. Although the basic architecture of our system is NMT, reranking technique is conducted using SMT results. One of the major drawback of NMT is under-translation and over-translation. On the other hand, SMT infrequently makes such translations. So, using reranking of n-best NMT outputs by the SMT output, discarding such translations can be expected. We can improve BLEU score from 46.03 to 47.08 by this technique in JPCzh-ja task.</abstract>
<identifier type="citekey">ehara-2017-smt</identifier>
<location>
<url>https://aclanthology.org/W17-5710</url>
</location>
<part>
<date>2017-11</date>
<extent unit="page">
<start>119</start>
<end>126</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T SMT reranked NMT
%A Ehara, Terumasa
%Y Nakazawa, Toshiaki
%Y Goto, Isao
%S Proceedings of the 4th Workshop on Asian Translation (WAT2017)
%D 2017
%8 November
%I Asian Federation of Natural Language Processing
%C Taipei, Taiwan
%F ehara-2017-smt
%X System architecture, experimental settings and experimental results of the EHR team for the WAT2017 tasks are described. We participate in three tasks: JPCen-ja, JPCzh-ja and JPCko-ja. Although the basic architecture of our system is NMT, reranking technique is conducted using SMT results. One of the major drawback of NMT is under-translation and over-translation. On the other hand, SMT infrequently makes such translations. So, using reranking of n-best NMT outputs by the SMT output, discarding such translations can be expected. We can improve BLEU score from 46.03 to 47.08 by this technique in JPCzh-ja task.
%U https://aclanthology.org/W17-5710
%P 119-126
Markdown (Informal)
[SMT reranked NMT](https://aclanthology.org/W17-5710) (Ehara, WAT 2017)
ACL
- Terumasa Ehara. 2017. SMT reranked NMT. In Proceedings of the 4th Workshop on Asian Translation (WAT2017), pages 119–126, Taipei, Taiwan. Asian Federation of Natural Language Processing.