@inproceedings{huang-etal-2017-incorporating,
    title = "Incorporating Dependency Trees Improve Identification of Pregnant Women on Social Media Platforms",
    author = "Huang, Yi-Jie  and
      Su, Chu Hsien  and
      Chang, Yi-Chun  and
      Ting, Tseng-Hsin  and
      Fu, Tzu-Yuan  and
      Wang, Rou-Min  and
      Dai, Hong-Jie  and
      Chang, Yung-Chun  and
      Jonnagaddala, Jitendra  and
      Hsu, Wen-Lian",
    editor = "Jonnagaddala, Jitendra  and
      Dai, Hong-Jie  and
      Chang, Yung-Chun",
    booktitle = "Proceedings of the International Workshop on Digital Disease Detection using Social Media 2017 ({DDDSM}-2017)",
    month = nov,
    year = "2017",
    address = "Taipei, Taiwan",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/W17-5804/",
    pages = "26--32",
    abstract = "The increasing popularity of social media lead users to share enormous information on the internet. This information has various application like, it can be used to develop models to understand or predict user behavior on social media platforms. For example, few online retailers have studied the shopping patterns to predict shopper{'}s pregnancy stage. Another interesting application is to use the social media platforms to analyze users' health-related information. In this study, we developed a tree kernel-based model to classify tweets conveying pregnancy related information using this corpus. The developed pregnancy classification model achieved an accuracy of 0.847 and an F-score of 0.565. A new corpus from popular social media platform Twitter was developed for the purpose of this study. In future, we would like to improve this corpus by reducing noise such as retweets."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="huang-etal-2017-incorporating">
    <titleInfo>
        <title>Incorporating Dependency Trees Improve Identification of Pregnant Women on Social Media Platforms</title>
    </titleInfo>
    <name type="personal">
        <namePart type="given">Yi-Jie</namePart>
        <namePart type="family">Huang</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Chu</namePart>
        <namePart type="given">Hsien</namePart>
        <namePart type="family">Su</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Yi-Chun</namePart>
        <namePart type="family">Chang</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Tseng-Hsin</namePart>
        <namePart type="family">Ting</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Tzu-Yuan</namePart>
        <namePart type="family">Fu</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Rou-Min</namePart>
        <namePart type="family">Wang</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Hong-Jie</namePart>
        <namePart type="family">Dai</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Yung-Chun</namePart>
        <namePart type="family">Chang</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Jitendra</namePart>
        <namePart type="family">Jonnagaddala</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Wen-Lian</namePart>
        <namePart type="family">Hsu</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <originInfo>
        <dateIssued>2017-11</dateIssued>
    </originInfo>
    <typeOfResource>text</typeOfResource>
    <relatedItem type="host">
        <titleInfo>
            <title>Proceedings of the International Workshop on Digital Disease Detection using Social Media 2017 (DDDSM-2017)</title>
        </titleInfo>
        <name type="personal">
            <namePart type="given">Jitendra</namePart>
            <namePart type="family">Jonnagaddala</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Hong-Jie</namePart>
            <namePart type="family">Dai</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Yung-Chun</namePart>
            <namePart type="family">Chang</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <originInfo>
            <publisher>Association for Computational Linguistics</publisher>
            <place>
                <placeTerm type="text">Taipei, Taiwan</placeTerm>
            </place>
        </originInfo>
        <genre authority="marcgt">conference publication</genre>
    </relatedItem>
    <abstract>The increasing popularity of social media lead users to share enormous information on the internet. This information has various application like, it can be used to develop models to understand or predict user behavior on social media platforms. For example, few online retailers have studied the shopping patterns to predict shopper’s pregnancy stage. Another interesting application is to use the social media platforms to analyze users’ health-related information. In this study, we developed a tree kernel-based model to classify tweets conveying pregnancy related information using this corpus. The developed pregnancy classification model achieved an accuracy of 0.847 and an F-score of 0.565. A new corpus from popular social media platform Twitter was developed for the purpose of this study. In future, we would like to improve this corpus by reducing noise such as retweets.</abstract>
    <identifier type="citekey">huang-etal-2017-incorporating</identifier>
    <location>
        <url>https://aclanthology.org/W17-5804/</url>
    </location>
    <part>
        <date>2017-11</date>
        <extent unit="page">
            <start>26</start>
            <end>32</end>
        </extent>
    </part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Incorporating Dependency Trees Improve Identification of Pregnant Women on Social Media Platforms
%A Huang, Yi-Jie
%A Su, Chu Hsien
%A Chang, Yi-Chun
%A Ting, Tseng-Hsin
%A Fu, Tzu-Yuan
%A Wang, Rou-Min
%A Dai, Hong-Jie
%A Chang, Yung-Chun
%A Jonnagaddala, Jitendra
%A Hsu, Wen-Lian
%Y Jonnagaddala, Jitendra
%Y Dai, Hong-Jie
%Y Chang, Yung-Chun
%S Proceedings of the International Workshop on Digital Disease Detection using Social Media 2017 (DDDSM-2017)
%D 2017
%8 November
%I Association for Computational Linguistics
%C Taipei, Taiwan
%F huang-etal-2017-incorporating
%X The increasing popularity of social media lead users to share enormous information on the internet. This information has various application like, it can be used to develop models to understand or predict user behavior on social media platforms. For example, few online retailers have studied the shopping patterns to predict shopper’s pregnancy stage. Another interesting application is to use the social media platforms to analyze users’ health-related information. In this study, we developed a tree kernel-based model to classify tweets conveying pregnancy related information using this corpus. The developed pregnancy classification model achieved an accuracy of 0.847 and an F-score of 0.565. A new corpus from popular social media platform Twitter was developed for the purpose of this study. In future, we would like to improve this corpus by reducing noise such as retweets.
%U https://aclanthology.org/W17-5804/
%P 26-32
Markdown (Informal)
[Incorporating Dependency Trees Improve Identification of Pregnant Women on Social Media Platforms](https://aclanthology.org/W17-5804/) (Huang et al., 2017)
ACL
- Yi-Jie Huang, Chu Hsien Su, Yi-Chun Chang, Tseng-Hsin Ting, Tzu-Yuan Fu, Rou-Min Wang, Hong-Jie Dai, Yung-Chun Chang, Jitendra Jonnagaddala, and Wen-Lian Hsu. 2017. Incorporating Dependency Trees Improve Identification of Pregnant Women on Social Media Platforms. In Proceedings of the International Workshop on Digital Disease Detection using Social Media 2017 (DDDSM-2017), pages 26–32, Taipei, Taiwan. Association for Computational Linguistics.