@inproceedings{yu-bohnet-2017-dependency,
title = "Dependency Language Models for Transition-based Dependency Parsing",
author = "Yu, Juntao and
Bohnet, Bernd",
editor = "Miyao, Yusuke and
Sagae, Kenji",
booktitle = "Proceedings of the 15th International Conference on Parsing Technologies",
month = sep,
year = "2017",
address = "Pisa, Italy",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/W17-6302/",
pages = "11--17",
abstract = "In this paper, we present an approach to improve the accuracy of a strong transition-based dependency parser by exploiting dependency language models that are extracted from a large parsed corpus. We integrated a small number of features based on the dependency language models into the parser. To demonstrate the effectiveness of the proposed approach, we evaluate our parser on standard English and Chinese data where the base parser could achieve competitive accuracy scores. Our enhanced parser achieved state-of-the-art accuracy on Chinese data and competitive results on English data. We gained a large absolute improvement of one point (UAS) on Chinese and 0.5 points for English."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="yu-bohnet-2017-dependency">
<titleInfo>
<title>Dependency Language Models for Transition-based Dependency Parsing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Juntao</namePart>
<namePart type="family">Yu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Bernd</namePart>
<namePart type="family">Bohnet</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2017-09</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 15th International Conference on Parsing Technologies</title>
</titleInfo>
<name type="personal">
<namePart type="given">Yusuke</namePart>
<namePart type="family">Miyao</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kenji</namePart>
<namePart type="family">Sagae</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Pisa, Italy</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>In this paper, we present an approach to improve the accuracy of a strong transition-based dependency parser by exploiting dependency language models that are extracted from a large parsed corpus. We integrated a small number of features based on the dependency language models into the parser. To demonstrate the effectiveness of the proposed approach, we evaluate our parser on standard English and Chinese data where the base parser could achieve competitive accuracy scores. Our enhanced parser achieved state-of-the-art accuracy on Chinese data and competitive results on English data. We gained a large absolute improvement of one point (UAS) on Chinese and 0.5 points for English.</abstract>
<identifier type="citekey">yu-bohnet-2017-dependency</identifier>
<location>
<url>https://aclanthology.org/W17-6302/</url>
</location>
<part>
<date>2017-09</date>
<extent unit="page">
<start>11</start>
<end>17</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Dependency Language Models for Transition-based Dependency Parsing
%A Yu, Juntao
%A Bohnet, Bernd
%Y Miyao, Yusuke
%Y Sagae, Kenji
%S Proceedings of the 15th International Conference on Parsing Technologies
%D 2017
%8 September
%I Association for Computational Linguistics
%C Pisa, Italy
%F yu-bohnet-2017-dependency
%X In this paper, we present an approach to improve the accuracy of a strong transition-based dependency parser by exploiting dependency language models that are extracted from a large parsed corpus. We integrated a small number of features based on the dependency language models into the parser. To demonstrate the effectiveness of the proposed approach, we evaluate our parser on standard English and Chinese data where the base parser could achieve competitive accuracy scores. Our enhanced parser achieved state-of-the-art accuracy on Chinese data and competitive results on English data. We gained a large absolute improvement of one point (UAS) on Chinese and 0.5 points for English.
%U https://aclanthology.org/W17-6302/
%P 11-17
Markdown (Informal)
[Dependency Language Models for Transition-based Dependency Parsing](https://aclanthology.org/W17-6302/) (Yu & Bohnet, IWPT 2017)
ACL