@inproceedings{cercel-etal-2017-oiqa,
title = "o{IQ}a: An Opinion Influence Oriented Question Answering Framework with Applications to Marketing Domain",
author = "Cercel, Dumitru-Clementin and
Onose, Cristian and
Trausan-Matu, Stefan and
Pop, Florin",
editor = "Makary, Mireille and
Oakes, Michael",
booktitle = "Proceedings of the 1st Workshop on Natural Language Processing and Information Retrieval associated with {RANLP} 2017",
month = sep,
year = "2017",
address = "Varna, Bulgaria",
publisher = "INCOMA Inc.",
url = "https://doi.org/10.26615/978-954-452-038-0_002",
doi = "10.26615/978-954-452-038-0_002",
pages = "11--18",
abstract = "Understanding questions and answers in QA system is a major challenge in the domain of natural language processing. In this paper, we present a question answering system that influences the human opinions in a conversation. The opinion words are quantified by using a lexicon-based method. We apply Latent Semantic Analysis and the cosine similarity measure between candidate answers and each question to infer the answer of the chatbot.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="cercel-etal-2017-oiqa">
<titleInfo>
<title>oIQa: An Opinion Influence Oriented Question Answering Framework with Applications to Marketing Domain</title>
</titleInfo>
<name type="personal">
<namePart type="given">Dumitru-Clementin</namePart>
<namePart type="family">Cercel</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Cristian</namePart>
<namePart type="family">Onose</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Stefan</namePart>
<namePart type="family">Trausan-Matu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Florin</namePart>
<namePart type="family">Pop</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2017-09</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 1st Workshop on Natural Language Processing and Information Retrieval associated with RANLP 2017</title>
</titleInfo>
<name type="personal">
<namePart type="given">Mireille</namePart>
<namePart type="family">Makary</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Michael</namePart>
<namePart type="family">Oakes</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>INCOMA Inc.</publisher>
<place>
<placeTerm type="text">Varna, Bulgaria</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Understanding questions and answers in QA system is a major challenge in the domain of natural language processing. In this paper, we present a question answering system that influences the human opinions in a conversation. The opinion words are quantified by using a lexicon-based method. We apply Latent Semantic Analysis and the cosine similarity measure between candidate answers and each question to infer the answer of the chatbot.</abstract>
<identifier type="citekey">cercel-etal-2017-oiqa</identifier>
<identifier type="doi">10.26615/978-954-452-038-0_002</identifier>
<part>
<date>2017-09</date>
<extent unit="page">
<start>11</start>
<end>18</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T oIQa: An Opinion Influence Oriented Question Answering Framework with Applications to Marketing Domain
%A Cercel, Dumitru-Clementin
%A Onose, Cristian
%A Trausan-Matu, Stefan
%A Pop, Florin
%Y Makary, Mireille
%Y Oakes, Michael
%S Proceedings of the 1st Workshop on Natural Language Processing and Information Retrieval associated with RANLP 2017
%D 2017
%8 September
%I INCOMA Inc.
%C Varna, Bulgaria
%F cercel-etal-2017-oiqa
%X Understanding questions and answers in QA system is a major challenge in the domain of natural language processing. In this paper, we present a question answering system that influences the human opinions in a conversation. The opinion words are quantified by using a lexicon-based method. We apply Latent Semantic Analysis and the cosine similarity measure between candidate answers and each question to infer the answer of the chatbot.
%R 10.26615/978-954-452-038-0_002
%U https://doi.org/10.26615/978-954-452-038-0_002
%P 11-18
Markdown (Informal)
[oIQa: An Opinion Influence Oriented Question Answering Framework with Applications to Marketing Domain](https://doi.org/10.26615/978-954-452-038-0_002) (Cercel et al., RANLP 2017)
ACL