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Abstract

Spoken word recognition involves at least
two basic computations. First is match-
ing acoustic input to phonological cate-
gories (e.g. /b/, /p/, /d/). Second is acti-
vating words consistent with those phono-
logical categories. Here we test the hy-
pothesis that the listener’s probability dis-
tribution over lexical items is weighted
by the outcome of both computations:
uncertainty about phonological discreti-
sation and the frequency of the selected
word(s). To test this, we record neural re-
sponses in auditory cortex using magneto-
encephalography, and model this activity
as a function of the size and relative ac-
tivation of lexical candidates. Our find-
ings indicate that towards the beginning
of a word, the processing system indeed
weights lexical candidates by both phono-
logical certainty and lexical frequency;
however, later into the word, activation is
weighted by frequency alone.

1 Introduction

There is mounting evidence for the predictive na-
ture of language comprehension. Response times
and neural activity are reduced in response to more
predictable linguistic input. This indicates that the
brain forms probabilistic hypotheses about current
and future linguistic content, which manifest in
expectations of phonemes, morphemes, words and
syntactic structures (Connolly and Phillips, 1994;
Lau et al., 2006; Lau et al., 2008; Ettinger et al.,
2014; Gwilliams and Marantz, 2015).

In speech comprehension, the brain’s task is to
correctly determine a word’s identity as quickly
as possible. It is not optimal to always wait un-
til word ending, because the target may be cor-
rectly identifiable earlier. For example, after hear-

ing hippopotamu- the final /s/ provides very lit-
tle additional information. Indeed, one could even
stop at hippot- and still identify the target word
correctly most of the time.1

How is this done? Upon hearing the beginning
of a lexical item, the brain activates the cohort of
words that are consistent with the acoustic signal.
Words in the cohort are activated relative to their
match to the phoneme sequence and frequency
of occurrence. With each subsequent phoneme,
the cohort is reduced as items cease to be consis-
tent with the provided input, until one item pre-
vails (see Figure 1). This process is consistent
with the highly influential cohort model of spo-
ken word recognition (Marslen-Wilson and Welsh,
1978; Marslen-Wilson, 1987), and has been asso-
ciated with activity in left superior temporal gyrus
(STG) (Gagnepain et al., 2012; Ettinger et al.,
2014; Gwilliams and Marantz, 2015).

In practice though, phoneme identity is often
uncertain: the acoustic signal may be consistent
with both a [b] and a [p], for example. This pho-
netic uncertainty, and its effect on lexical activa-
tion, is not addressed by the cohort model. How-
ever, there is evidence suggesting that phonetic
uncertainty affects lexical and sentential process-
ing (Connine et al., 1991; McMurray et al., 2009;
Bicknell et al., 2015).

Here we build upon this previous work in or-
der to understand the neural computations under-
lying lexical activation, in service to spoken word
recognition. Concretely, we ask: How does fine-
grained acoustic information (below the phono-
logical level) serve to activate lexical hypotheses
and estimate their probabilities? Can this integra-
tion between phonological and lexical levels of de-
scription be read out from the STG?

1Note that hippopotomonstrosesquippedaliophobia (‘fear
of long words’) and hippopotas (‘a ground-type Pokemon’)
are also possible lexical items but much less frequent than
the target in this case, so less likely to be selected.
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Figure 1: Schematic depiction of cohort activation under each of the two models, for the first five
phonemes of the word palate. The onset b-p symbol represents that the onset phoneme was 75% consis-
tent with a /b/ and 25% consistent with a /p/. Transparency reflects relative word activation. Note that
the change in transparency between the two accounts reflects the actual probabilities predicted by each
model — because there are more words activated in the Acoustic-Weighted account, less normalised
probability is assigned to each item.

To address these questions, we model neural re-
sponses in STG, time-locked to each phoneme in a
word, as a function of two computational models.
One model assumes that the activation of a lexi-
cal candidate is gradiently weighted by the acous-
tic evidence in favour of that candidate: e.g., bal-
loon is activated in proportion to how /b/-like the
initial sound of the word was, even if that sound
was more likely to represent a different phoneme
(e.g., /p/). We refer to this model, in which pho-
netic uncertainty is carried over to the word recog-
nition process, as the acoustic-weighted model.
The other model assumes that acoustic informa-
tion serves as a switch: a lexical item is either
fully activated or not activated at all, as a result
of a discrete decision made at the phonetic level.
This model, which we refer to as the switch-based
model, is most consistent with the traditional co-
hort model – the system commits to whichever
phoneme is more likely, and this is used to form
predictions at the lexical level (see Figure 1). A
subset of the data reported here are also published
in Gwilliams et al. (2017).

2 Summary of human data

2.1 Materials

Word pairs were selected such that, apart from the
first phoneme, there was an identical phoneme se-
quence until a point of disambiguation. For exam-
ple, palate and balance share their second, third
and fourth phonemes ([æ], [l] and [@], respec-
tively), and diverge on the fifth ([t] vs. [n]). We se-
lected 103 word pairs with this property. The onset

of each word was either a voiced (d, b, g) or voice-
less (t, p, k) plosive. A native English speaker
was recorded saying each of these 206 words in
isolation. The onset of each word was morphed
along one phonetic feature, using the TANDEM-
STRAIGHT software to create a 11-step contin-
uum between word (e.g., direct) and non-word
(e.g., tirect) (see Figure 2). The 11-step acoustic
continuum was then re-sampled to form a 5-step
perceptually defined continuum, based on the pro-
portion of selections in a behavioural pre-test.

2.2 MEG experiment

Native English participants (n = 25) listened to
each of the 103× 5 words in isolation, and in 20%
of trials (randomly distributed) made an auditory-
to-visual word matching judgment.

While completing the task, neural responses
were recorded using a 208-sensor KIT magnetoen-
cephalography (MEG) system. Data were sam-

Figure 2: Waveforms of example endpoints of a
lexical continuum. The word direct is above, and
the non-word tirect is below. Dashed lines corre-
spond to the timing of each phoneme onset.
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Figure 3: Top: Average surprisal and entropy values at each phoneme along the word. Note that not all
words are 9 phonemes long, so phonemes at longer latencies contain fewer entries. Error bars represent
one standard deviation from the mean. Bottom: Correlation between the two models’ surprisal values and
the two models’ entropy values, at the second phoneme. Red circles highlight the outliers topography,
tirade and casino (from right to left).

pled at 1000 Hz, which provided a measure of neu-
ral activity at each millisecond. In order to test re-
sponses to specific phonemes in a word, the data
were cut into a series of 700 ms epochs, where
the time at 0 ms corresponds to the onset of a
phoneme. Note that the phonemes were shorter
than 700 ms, so the epochs overlapped in time.
The activity recorded from MEG sensors was lo-
calised using MNE-Python software (Gramfort et
al., 2014), and averaged over the left STG. This
provided one datapoint per millisecond (700) per
phoneme (4370) per participant (25).

3 Modeling of MEG data

The variables of interest were entropy and sur-
prisal. Entropy quantifies uncertainty about the re-
sulting lexical item. For switch-based entropy we
followed the typical calculation, which assumes
that only the words whose phonemes are most con-
sistent with the acoustics are included in the acti-
vated cohort (e.g., only the b-onset words):

−
∑

w∈C
P (w|C)log2P (w|C) (1)

where C is the set of all words consistent with the
heard prefix, and

P (w|C) = f(w)∑
w∈C

f(w)
(2)

where f(w) is the frequency of the word w.
For acoustic-weighted entropy, the cohort is

made up of two sub-cohorts, Ca and Cb, one
for each of the possible word-initial phonemes
(e.g., /b/ and /p/). The conditional probabilities
of the words in each sub-cohort Ca and Cb were
weighted by the probabilities of each possible on-
set phoneme given the acoustic signal A, which
we derived from the behavioural pretest:

P (w|C,A) = P (w|Ca)P (ϕa|A)+
P (w|Cb)P (ϕb|A)

(3)
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where ϕa and ϕb are the two phonemes consis-
tent with the acoustic signal A. These acoustic-
weighted measures of word frequency and cohort
frequency were then used in the typical entropy
calculation given in Equation 1. We note that
switch-based entropy can be understood as the
result of rounding the acoustic weighting terms
P (ϕa|A) and P (ϕb|A) to their nearest integer (ei-
ther 1 or 0; see Figure 1).

Surprisal quantifies how expected the cur-
rent phoneme ϕt is given the prior phonemes
ϕ1, . . . , ϕt−1:

−log2
f(ϕ1, . . . , ϕt)

f(ϕ1, . . . , ϕt−1)
(4)

where f(ϕ1, . . . , ϕt) denotes the summed fre-
quency of all words that start with the phoneme
sequence ϕ1, . . . , ϕt.

For switch-based surprisal, the conditional
probability is calculated from the cohort of words
most consistent with the acoustics at onset: e.g.
the b-onset words. To calculate acoustic-weighted
surprisal, we estimate the conditional probability
separately for each cohort of words (a, b), and then
scale each conditional probability by an acoustic
weighting term and a lexical weighting term:

−log2
(
P (ϕa|A)

f(ϕa, ϕ2, . . . , ϕt)

f(ϕa, ϕ2, . . . , ϕt−1)
Qt

a+

P (ϕb|A)
f(ϕb, ϕ2, . . . , ϕt)

f(ϕb, ϕ2, . . . , ϕt−1)
Qt

b

) (5)

where

Qt
a =

f(ϕa, ϕ2, . . . , ϕt)

f(ϕa, ϕ2, . . . , ϕt) + f(ϕb, ϕ2, . . . , ϕt)
(6)

TheQ lexical weighting is the probability of the
observed sequence, given a cohort that contains
both ϕa and ϕb-onset words. The acoustic weight-
ing is the same as described above.

In all, this surprisal value is calculated by es-
timating the probability of each phoneme ϕa, ϕb

given i) acoustics; ii) preceding phonemes; iii)
probability of the sequence given a joint cohort.
The probability of each phoneme is then summed
before taking the negative logarithm. This derives
an overall surprisal of the sound, given the phono-
logical categories it could realise.

For all of these calculations, word frequencies
were extracted from the English Lexicon Project
(Balota et al., 2007).

As shown in Figure 3, the surprisal and entropy
calculations from the two models were highly cor-
related. This is because here we are re-analysing
a dataset that was designed and collected for other
reasons. In future work we plan to design mate-
rials that maximally distinguish switch-based and
acoustic-based accounts. Our results stand in as a
first approximation that can (and should) be built
upon.

4 Results

The dependent measure was activation of left
STG, averaged between 200-250 ms after
phoneme onset, a time window determined based
on Ettinger et al. (2014). This activity was
modelled time-locked to each phoneme along the
length the word, but we primarily focused on the
second (mean post-onset latency = 87 ms; SD =
25 ms, 4021 observations) and the sixth phonemes
(mean post-onset latency = 411 ms; SD = 78
ms, 3264 observations). This was because they
included a similar number of trials in each model
comparison, while also ensuring substantial
differences in latency from word onset. Reported
results were corrected for multiple comparisons
over all six phoneme positions using Bonferroni
correction. Only responses to partially ambiguous
trials were included (0.25 and 0.75), because this
is where the predictions of acoustic-weighted and
switch-based models are most distinct.

We evaluated the fit of the predictions of each
model to the neural measurement using a lin-
ear mixed effects model. The full model con-
tained switch-based and acoustic-weighted sur-
prisal, switch-based and acoustic-weighted en-
tropy, phoneme latency, trial number, block
number, stimulus amplitude of the first 30 ms,
phoneme pair and ambiguity as fixed effects. By-
subject slopes were included for all entropy and
surprisal predictors. This full model was com-
pared to a model where either acoustic-entropy
and surprisal, or switch-based entropy and sur-
prisal, were removed as fixed effects (but remained
as by-subject slopes). This gave a statistical as-
sessment of the amount of variance the acoustic-
weighted and switch-based models were account-
ing for.

At the second phoneme, the acoustic-weighted
variables explained a significant amount of vari-
ance (χ2 = 5.02, p = .025), whereas the switch-
based variables did not (χ2 = 2.62, p = .1).
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Figure 4: Reduction in linear mixed-effects model log-likelihood resulting from excluding acoustic-
weighted surprisal and entropy (in red) or switch-based surprisal and entropy (in blue); higher values
indicate that the predictors increase model fit more. The dependent measure was activity averaged from
200-250 ms in STG, time-locked to phonemes along the length of the words.

At the third phoneme, the acoustic-weighted vari-
ables were marginally significant (χ2 = 3.49,
p = .061), the switch-based variables were not
(χ2 = 2.41, p = .12). At the fourth phoneme,
neither model was significant: Acoustic weighted
(χ2 = 2.05, p = .15) or switch-based (χ2 =
2.81, p = .094). The same was true at the
fifth phoneme: Acoustic weighted (χ2 = 2.19,
p = .14), switch-based (χ2 = 1.42, p = .23). At
the sixth phoneme, we observe the opposite effect
from the second phoneme position: the switch-
based variables explained a significant amount of
variance (χ2 = 5.26, p = .022) and the acoustic-
weighted variables had only marginal explanatory
power (χ2 = 3.46, p = .06). These results are
displayed in Figure 4.

5 Discussion

We have found evidence that the brain uses fine-
grained acoustic information to weight lexical pre-
dictions in spoken word recognition. At the begin-
ning of a word, lexical hypotheses are activated in
proportion to the bottom-up acoustic evidence; to-
wards the end, acoustic evidence acts as a switch-
like function, to either fully activate or deactivate
the word, bounded by its frequency of occurrence.
This finding has two primary implications.

First, it suggests that the system does not wait
until phonological categories have been disam-
biguated before activating lexical items. Rather,
uncertainty about phonological classification is
used to modulate higher level processes, ensuring

that phonological discretisation is not a bottleneck
in activating lexical items. This supports interac-
tive models of speech processing, because it sug-
gests that the output of one stage does not need to
be determined before initiating the following. In
particular, this finding is inconsistent with the Co-
hort model of speech perception (Marslen-Wilson
and Welsh, 1978), which assumes that the system
first commits to the most likely phoneme before
making lexical predictions.

Second, it suggests that the same processing
strategy is not heuristically applied in all situa-
tions. Rather, phonological information appears
to be used more when processing the beginning
of a word than the end. There are two explana-
tions for this. This could reflect that the system
commits to a particular phonological category af-
ter a given delay period, and so the phonological
weights used by the system converge to a stable
decision point. Or perhaps lexical frequency be-
comes more informative as the size of the cohort
decreases, and so phonological detail is given less
predictive power by the processing system. A sim-
ple way to tease these alternatives apart in future
work is to manipulate the ambiguity of phonemes
within a word, not just in initial position. The for-
mer would predict that acoustic evidence is used in
close proximity to the ambiguous sound, regard-
less of its position in the word; the latter would
predict that acoustic evidence is used more at the
beginning of the word, regardless of the position
of the ambiguous sound.
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