@inproceedings{bingel-bjerva-2018-cross,
title = "Cross-lingual complex word identification with multitask learning",
author = "Bingel, Joachim and
Bjerva, Johannes",
editor = "Tetreault, Joel and
Burstein, Jill and
Kochmar, Ekaterina and
Leacock, Claudia and
Yannakoudakis, Helen",
booktitle = "Proceedings of the Thirteenth Workshop on Innovative Use of {NLP} for Building Educational Applications",
month = jun,
year = "2018",
address = "New Orleans, Louisiana",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/W18-0518",
doi = "10.18653/v1/W18-0518",
pages = "166--174",
abstract = "We approach the 2018 Shared Task on Complex Word Identification by leveraging a cross-lingual multitask learning approach. Our method is highly language agnostic, as evidenced by the ability of our system to generalize across languages, including languages for which we have no training data. In the shared task, this is the case for French, for which our system achieves the best performance. We further provide a qualitative and quantitative analysis of which words pose problems for our system.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="bingel-bjerva-2018-cross">
<titleInfo>
<title>Cross-lingual complex word identification with multitask learning</title>
</titleInfo>
<name type="personal">
<namePart type="given">Joachim</namePart>
<namePart type="family">Bingel</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Johannes</namePart>
<namePart type="family">Bjerva</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2018-06</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Thirteenth Workshop on Innovative Use of NLP for Building Educational Applications</title>
</titleInfo>
<name type="personal">
<namePart type="given">Joel</namePart>
<namePart type="family">Tetreault</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jill</namePart>
<namePart type="family">Burstein</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ekaterina</namePart>
<namePart type="family">Kochmar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Claudia</namePart>
<namePart type="family">Leacock</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Helen</namePart>
<namePart type="family">Yannakoudakis</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">New Orleans, Louisiana</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We approach the 2018 Shared Task on Complex Word Identification by leveraging a cross-lingual multitask learning approach. Our method is highly language agnostic, as evidenced by the ability of our system to generalize across languages, including languages for which we have no training data. In the shared task, this is the case for French, for which our system achieves the best performance. We further provide a qualitative and quantitative analysis of which words pose problems for our system.</abstract>
<identifier type="citekey">bingel-bjerva-2018-cross</identifier>
<identifier type="doi">10.18653/v1/W18-0518</identifier>
<location>
<url>https://aclanthology.org/W18-0518</url>
</location>
<part>
<date>2018-06</date>
<extent unit="page">
<start>166</start>
<end>174</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Cross-lingual complex word identification with multitask learning
%A Bingel, Joachim
%A Bjerva, Johannes
%Y Tetreault, Joel
%Y Burstein, Jill
%Y Kochmar, Ekaterina
%Y Leacock, Claudia
%Y Yannakoudakis, Helen
%S Proceedings of the Thirteenth Workshop on Innovative Use of NLP for Building Educational Applications
%D 2018
%8 June
%I Association for Computational Linguistics
%C New Orleans, Louisiana
%F bingel-bjerva-2018-cross
%X We approach the 2018 Shared Task on Complex Word Identification by leveraging a cross-lingual multitask learning approach. Our method is highly language agnostic, as evidenced by the ability of our system to generalize across languages, including languages for which we have no training data. In the shared task, this is the case for French, for which our system achieves the best performance. We further provide a qualitative and quantitative analysis of which words pose problems for our system.
%R 10.18653/v1/W18-0518
%U https://aclanthology.org/W18-0518
%U https://doi.org/10.18653/v1/W18-0518
%P 166-174
Markdown (Informal)
[Cross-lingual complex word identification with multitask learning](https://aclanthology.org/W18-0518) (Bingel & Bjerva, BEA 2018)
ACL