@inproceedings{rich-etal-2018-modeling,
title = "Modeling Second-Language Learning from a Psychological Perspective",
author = "Rich, Alexander and
Osborn Popp, Pamela and
Halpern, David and
Rothe, Anselm and
Gureckis, Todd",
editor = "Tetreault, Joel and
Burstein, Jill and
Kochmar, Ekaterina and
Leacock, Claudia and
Yannakoudakis, Helen",
booktitle = "Proceedings of the Thirteenth Workshop on Innovative Use of {NLP} for Building Educational Applications",
month = jun,
year = "2018",
address = "New Orleans, Louisiana",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/W18-0526",
doi = "10.18653/v1/W18-0526",
pages = "223--230",
abstract = "Psychological research on learning and memory has tended to emphasize small-scale laboratory studies. However, large datasets of people using educational software provide opportunities to explore these issues from a new perspective. In this paper we describe our approach to the Duolingo Second Language Acquisition Modeling (SLAM) competition which was run in early 2018. We used a well-known class of algorithms (gradient boosted decision trees), with features partially informed by theories from the psychological literature. After detailing our modeling approach and a number of supplementary simulations, we reflect on the degree to which psychological theory aided the model, and the potential for cognitive science and predictive modeling competitions to gain from each other.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="rich-etal-2018-modeling">
<titleInfo>
<title>Modeling Second-Language Learning from a Psychological Perspective</title>
</titleInfo>
<name type="personal">
<namePart type="given">Alexander</namePart>
<namePart type="family">Rich</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Pamela</namePart>
<namePart type="family">Osborn Popp</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">David</namePart>
<namePart type="family">Halpern</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Anselm</namePart>
<namePart type="family">Rothe</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Todd</namePart>
<namePart type="family">Gureckis</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2018-06</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Thirteenth Workshop on Innovative Use of NLP for Building Educational Applications</title>
</titleInfo>
<name type="personal">
<namePart type="given">Joel</namePart>
<namePart type="family">Tetreault</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jill</namePart>
<namePart type="family">Burstein</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ekaterina</namePart>
<namePart type="family">Kochmar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Claudia</namePart>
<namePart type="family">Leacock</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Helen</namePart>
<namePart type="family">Yannakoudakis</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">New Orleans, Louisiana</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Psychological research on learning and memory has tended to emphasize small-scale laboratory studies. However, large datasets of people using educational software provide opportunities to explore these issues from a new perspective. In this paper we describe our approach to the Duolingo Second Language Acquisition Modeling (SLAM) competition which was run in early 2018. We used a well-known class of algorithms (gradient boosted decision trees), with features partially informed by theories from the psychological literature. After detailing our modeling approach and a number of supplementary simulations, we reflect on the degree to which psychological theory aided the model, and the potential for cognitive science and predictive modeling competitions to gain from each other.</abstract>
<identifier type="citekey">rich-etal-2018-modeling</identifier>
<identifier type="doi">10.18653/v1/W18-0526</identifier>
<location>
<url>https://aclanthology.org/W18-0526</url>
</location>
<part>
<date>2018-06</date>
<extent unit="page">
<start>223</start>
<end>230</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Modeling Second-Language Learning from a Psychological Perspective
%A Rich, Alexander
%A Osborn Popp, Pamela
%A Halpern, David
%A Rothe, Anselm
%A Gureckis, Todd
%Y Tetreault, Joel
%Y Burstein, Jill
%Y Kochmar, Ekaterina
%Y Leacock, Claudia
%Y Yannakoudakis, Helen
%S Proceedings of the Thirteenth Workshop on Innovative Use of NLP for Building Educational Applications
%D 2018
%8 June
%I Association for Computational Linguistics
%C New Orleans, Louisiana
%F rich-etal-2018-modeling
%X Psychological research on learning and memory has tended to emphasize small-scale laboratory studies. However, large datasets of people using educational software provide opportunities to explore these issues from a new perspective. In this paper we describe our approach to the Duolingo Second Language Acquisition Modeling (SLAM) competition which was run in early 2018. We used a well-known class of algorithms (gradient boosted decision trees), with features partially informed by theories from the psychological literature. After detailing our modeling approach and a number of supplementary simulations, we reflect on the degree to which psychological theory aided the model, and the potential for cognitive science and predictive modeling competitions to gain from each other.
%R 10.18653/v1/W18-0526
%U https://aclanthology.org/W18-0526
%U https://doi.org/10.18653/v1/W18-0526
%P 223-230
Markdown (Informal)
[Modeling Second-Language Learning from a Psychological Perspective](https://aclanthology.org/W18-0526) (Rich et al., BEA 2018)
ACL
- Alexander Rich, Pamela Osborn Popp, David Halpern, Anselm Rothe, and Todd Gureckis. 2018. Modeling Second-Language Learning from a Psychological Perspective. In Proceedings of the Thirteenth Workshop on Innovative Use of NLP for Building Educational Applications, pages 223–230, New Orleans, Louisiana. Association for Computational Linguistics.