@inproceedings{bestgen-2018-predicting,
title = "Predicting Second Language Learner Successes and Mistakes by Means of Conjunctive Features",
author = "Bestgen, Yves",
editor = "Tetreault, Joel and
Burstein, Jill and
Kochmar, Ekaterina and
Leacock, Claudia and
Yannakoudakis, Helen",
booktitle = "Proceedings of the Thirteenth Workshop on Innovative Use of {NLP} for Building Educational Applications",
month = jun,
year = "2018",
address = "New Orleans, Louisiana",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/W18-0542",
doi = "10.18653/v1/W18-0542",
pages = "349--355",
abstract = "This paper describes the system developed by the Centre for English Corpus Linguistics for the 2018 Duolingo SLAM challenge. It aimed at predicting the successes and mistakes of second language learners on each of the words that compose the exercises they answered. Its main characteristic is to include conjunctive features, built by combining word ngrams with metadata about the user and the exercise. It achieved a relatively good performance, ranking fifth out of 15 systems. Complementary analyses carried out to gauge the contribution of the different sets of features to the performance confirmed the usefulness of the conjunctive features for the SLAM task.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="bestgen-2018-predicting">
<titleInfo>
<title>Predicting Second Language Learner Successes and Mistakes by Means of Conjunctive Features</title>
</titleInfo>
<name type="personal">
<namePart type="given">Yves</namePart>
<namePart type="family">Bestgen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2018-06</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Thirteenth Workshop on Innovative Use of NLP for Building Educational Applications</title>
</titleInfo>
<name type="personal">
<namePart type="given">Joel</namePart>
<namePart type="family">Tetreault</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jill</namePart>
<namePart type="family">Burstein</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ekaterina</namePart>
<namePart type="family">Kochmar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Claudia</namePart>
<namePart type="family">Leacock</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Helen</namePart>
<namePart type="family">Yannakoudakis</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">New Orleans, Louisiana</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>This paper describes the system developed by the Centre for English Corpus Linguistics for the 2018 Duolingo SLAM challenge. It aimed at predicting the successes and mistakes of second language learners on each of the words that compose the exercises they answered. Its main characteristic is to include conjunctive features, built by combining word ngrams with metadata about the user and the exercise. It achieved a relatively good performance, ranking fifth out of 15 systems. Complementary analyses carried out to gauge the contribution of the different sets of features to the performance confirmed the usefulness of the conjunctive features for the SLAM task.</abstract>
<identifier type="citekey">bestgen-2018-predicting</identifier>
<identifier type="doi">10.18653/v1/W18-0542</identifier>
<location>
<url>https://aclanthology.org/W18-0542</url>
</location>
<part>
<date>2018-06</date>
<extent unit="page">
<start>349</start>
<end>355</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Predicting Second Language Learner Successes and Mistakes by Means of Conjunctive Features
%A Bestgen, Yves
%Y Tetreault, Joel
%Y Burstein, Jill
%Y Kochmar, Ekaterina
%Y Leacock, Claudia
%Y Yannakoudakis, Helen
%S Proceedings of the Thirteenth Workshop on Innovative Use of NLP for Building Educational Applications
%D 2018
%8 June
%I Association for Computational Linguistics
%C New Orleans, Louisiana
%F bestgen-2018-predicting
%X This paper describes the system developed by the Centre for English Corpus Linguistics for the 2018 Duolingo SLAM challenge. It aimed at predicting the successes and mistakes of second language learners on each of the words that compose the exercises they answered. Its main characteristic is to include conjunctive features, built by combining word ngrams with metadata about the user and the exercise. It achieved a relatively good performance, ranking fifth out of 15 systems. Complementary analyses carried out to gauge the contribution of the different sets of features to the performance confirmed the usefulness of the conjunctive features for the SLAM task.
%R 10.18653/v1/W18-0542
%U https://aclanthology.org/W18-0542
%U https://doi.org/10.18653/v1/W18-0542
%P 349-355
Markdown (Informal)
[Predicting Second Language Learner Successes and Mistakes by Means of Conjunctive Features](https://aclanthology.org/W18-0542) (Bestgen, BEA 2018)
ACL