What type of happiness are you looking for? - A closer look at detecting mental health from language

Alina Arseniev-Koehler, Sharon Mozgai, Stefan Scherer


Abstract
Computational models to detect mental illnesses from text and speech could enhance our understanding of mental health while offering opportunities for early detection and intervention. However, these models are often disconnected from the lived experience of depression and the larger diagnostic debates in mental health. This article investigates these disconnects, primarily focusing on the labels used to diagnose depression, how these labels are computationally represented, and the performance metrics used to evaluate computational models. We also consider how medical instruments used to measure depression, such as the Patient Health Questionnaire (PHQ), contribute to these disconnects. To illustrate our points, we incorporate mixed-methods analyses of 698 interviews on emotional health, which are coupled with self-report PHQ screens for depression. We propose possible strategies to bridge these gaps between modern psychiatric understandings of depression, lay experience of depression, and computational representation.
Anthology ID:
W18-0601
Volume:
Proceedings of the Fifth Workshop on Computational Linguistics and Clinical Psychology: From Keyboard to Clinic
Month:
June
Year:
2018
Address:
New Orleans, LA
Venue:
CLPsych
SIG:
Publisher:
Association for Computational Linguistics
Note:
Pages:
1–12
Language:
URL:
https://aclanthology.org/W18-0601
DOI:
10.18653/v1/W18-0601
Bibkey:
Cite (ACL):
Alina Arseniev-Koehler, Sharon Mozgai, and Stefan Scherer. 2018. What type of happiness are you looking for? - A closer look at detecting mental health from language. In Proceedings of the Fifth Workshop on Computational Linguistics and Clinical Psychology: From Keyboard to Clinic, pages 1–12, New Orleans, LA. Association for Computational Linguistics.
Cite (Informal):
What type of happiness are you looking for? - A closer look at detecting mental health from language (Arseniev-Koehler et al., CLPsych 2018)
Copy Citation:
PDF:
https://aclanthology.org/W18-0601.pdf