@inproceedings{loveys-etal-2018-cross,
title = "Cross-cultural differences in language markers of depression online",
author = "Loveys, Kate and
Torrez, Jonathan and
Fine, Alex and
Moriarty, Glen and
Coppersmith, Glen",
editor = "Loveys, Kate and
Niederhoffer, Kate and
Prud{'}hommeaux, Emily and
Resnik, Rebecca and
Resnik, Philip",
booktitle = "Proceedings of the Fifth Workshop on Computational Linguistics and Clinical Psychology: From Keyboard to Clinic",
month = jun,
year = "2018",
address = "New Orleans, LA",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/W18-0608/",
doi = "10.18653/v1/W18-0608",
pages = "78--87",
abstract = "Depression is a global mental health condition that affects all cultures. Despite this, the way depression is expressed varies by culture. Uptake of machine learning technology for diagnosing mental health conditions means that increasingly more depression classifiers are created from online language data. Yet, culture is rarely considered as a factor affecting online language in this literature. This study explores cultural differences in online language data of users with depression. Written language data from 1,593 users with self-reported depression from the online peer support community 7 Cups of Tea was analyzed using the Linguistic Inquiry and Word Count (LIWC), topic modeling, data visualization, and other techniques. We compared the language of users identifying as White, Black or African American, Hispanic or Latino, and Asian or Pacific Islander. Exploratory analyses revealed cross-cultural differences in depression expression in online language data, particularly in relation to emotion expression, cognition, and functioning. The results have important implications for avoiding depression misclassification from machine-driven assessments when used in a clinical setting, and for avoiding inadvertent cultural biases in this line of research more broadly."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="loveys-etal-2018-cross">
<titleInfo>
<title>Cross-cultural differences in language markers of depression online</title>
</titleInfo>
<name type="personal">
<namePart type="given">Kate</namePart>
<namePart type="family">Loveys</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jonathan</namePart>
<namePart type="family">Torrez</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alex</namePart>
<namePart type="family">Fine</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Glen</namePart>
<namePart type="family">Moriarty</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Glen</namePart>
<namePart type="family">Coppersmith</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2018-06</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Fifth Workshop on Computational Linguistics and Clinical Psychology: From Keyboard to Clinic</title>
</titleInfo>
<name type="personal">
<namePart type="given">Kate</namePart>
<namePart type="family">Loveys</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kate</namePart>
<namePart type="family">Niederhoffer</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Emily</namePart>
<namePart type="family">Prud’hommeaux</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Rebecca</namePart>
<namePart type="family">Resnik</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Philip</namePart>
<namePart type="family">Resnik</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">New Orleans, LA</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Depression is a global mental health condition that affects all cultures. Despite this, the way depression is expressed varies by culture. Uptake of machine learning technology for diagnosing mental health conditions means that increasingly more depression classifiers are created from online language data. Yet, culture is rarely considered as a factor affecting online language in this literature. This study explores cultural differences in online language data of users with depression. Written language data from 1,593 users with self-reported depression from the online peer support community 7 Cups of Tea was analyzed using the Linguistic Inquiry and Word Count (LIWC), topic modeling, data visualization, and other techniques. We compared the language of users identifying as White, Black or African American, Hispanic or Latino, and Asian or Pacific Islander. Exploratory analyses revealed cross-cultural differences in depression expression in online language data, particularly in relation to emotion expression, cognition, and functioning. The results have important implications for avoiding depression misclassification from machine-driven assessments when used in a clinical setting, and for avoiding inadvertent cultural biases in this line of research more broadly.</abstract>
<identifier type="citekey">loveys-etal-2018-cross</identifier>
<identifier type="doi">10.18653/v1/W18-0608</identifier>
<location>
<url>https://aclanthology.org/W18-0608/</url>
</location>
<part>
<date>2018-06</date>
<extent unit="page">
<start>78</start>
<end>87</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Cross-cultural differences in language markers of depression online
%A Loveys, Kate
%A Torrez, Jonathan
%A Fine, Alex
%A Moriarty, Glen
%A Coppersmith, Glen
%Y Loveys, Kate
%Y Niederhoffer, Kate
%Y Prud’hommeaux, Emily
%Y Resnik, Rebecca
%Y Resnik, Philip
%S Proceedings of the Fifth Workshop on Computational Linguistics and Clinical Psychology: From Keyboard to Clinic
%D 2018
%8 June
%I Association for Computational Linguistics
%C New Orleans, LA
%F loveys-etal-2018-cross
%X Depression is a global mental health condition that affects all cultures. Despite this, the way depression is expressed varies by culture. Uptake of machine learning technology for diagnosing mental health conditions means that increasingly more depression classifiers are created from online language data. Yet, culture is rarely considered as a factor affecting online language in this literature. This study explores cultural differences in online language data of users with depression. Written language data from 1,593 users with self-reported depression from the online peer support community 7 Cups of Tea was analyzed using the Linguistic Inquiry and Word Count (LIWC), topic modeling, data visualization, and other techniques. We compared the language of users identifying as White, Black or African American, Hispanic or Latino, and Asian or Pacific Islander. Exploratory analyses revealed cross-cultural differences in depression expression in online language data, particularly in relation to emotion expression, cognition, and functioning. The results have important implications for avoiding depression misclassification from machine-driven assessments when used in a clinical setting, and for avoiding inadvertent cultural biases in this line of research more broadly.
%R 10.18653/v1/W18-0608
%U https://aclanthology.org/W18-0608/
%U https://doi.org/10.18653/v1/W18-0608
%P 78-87
Markdown (Informal)
[Cross-cultural differences in language markers of depression online](https://aclanthology.org/W18-0608/) (Loveys et al., CLPsych 2018)
ACL
- Kate Loveys, Jonathan Torrez, Alex Fine, Glen Moriarty, and Glen Coppersmith. 2018. Cross-cultural differences in language markers of depression online. In Proceedings of the Fifth Workshop on Computational Linguistics and Clinical Psychology: From Keyboard to Clinic, pages 78–87, New Orleans, LA. Association for Computational Linguistics.