@inproceedings{roesiger-etal-2018-integrating,
title = "Integrating Predictions from Neural-Network Relation Classifiers into Coreference and Bridging Resolution",
author = {Roesiger, Ina and
K{\"o}per, Maximilian and
Nguyen, Kim Anh and
Schulte im Walde, Sabine},
editor = "Poesio, Massimo and
Ng, Vincent and
Ogrodniczuk, Maciej",
booktitle = "Proceedings of the First Workshop on Computational Models of Reference, Anaphora and Coreference",
month = jun,
year = "2018",
address = "New Orleans, Louisiana",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/W18-0705",
doi = "10.18653/v1/W18-0705",
pages = "44--49",
abstract = "Cases of coreference and bridging resolution often require knowledge about semantic relations between anaphors and antecedents. We suggest state-of-the-art neural-network classifiers trained on relation benchmarks to predict and integrate likelihoods for relations. Two experiments with representations differing in noise and complexity improve our bridging but not our coreference resolver.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="roesiger-etal-2018-integrating">
<titleInfo>
<title>Integrating Predictions from Neural-Network Relation Classifiers into Coreference and Bridging Resolution</title>
</titleInfo>
<name type="personal">
<namePart type="given">Ina</namePart>
<namePart type="family">Roesiger</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Maximilian</namePart>
<namePart type="family">Köper</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kim</namePart>
<namePart type="given">Anh</namePart>
<namePart type="family">Nguyen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sabine</namePart>
<namePart type="family">Schulte im Walde</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2018-06</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the First Workshop on Computational Models of Reference, Anaphora and Coreference</title>
</titleInfo>
<name type="personal">
<namePart type="given">Massimo</namePart>
<namePart type="family">Poesio</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Vincent</namePart>
<namePart type="family">Ng</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Maciej</namePart>
<namePart type="family">Ogrodniczuk</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">New Orleans, Louisiana</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Cases of coreference and bridging resolution often require knowledge about semantic relations between anaphors and antecedents. We suggest state-of-the-art neural-network classifiers trained on relation benchmarks to predict and integrate likelihoods for relations. Two experiments with representations differing in noise and complexity improve our bridging but not our coreference resolver.</abstract>
<identifier type="citekey">roesiger-etal-2018-integrating</identifier>
<identifier type="doi">10.18653/v1/W18-0705</identifier>
<location>
<url>https://aclanthology.org/W18-0705</url>
</location>
<part>
<date>2018-06</date>
<extent unit="page">
<start>44</start>
<end>49</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Integrating Predictions from Neural-Network Relation Classifiers into Coreference and Bridging Resolution
%A Roesiger, Ina
%A Köper, Maximilian
%A Nguyen, Kim Anh
%A Schulte im Walde, Sabine
%Y Poesio, Massimo
%Y Ng, Vincent
%Y Ogrodniczuk, Maciej
%S Proceedings of the First Workshop on Computational Models of Reference, Anaphora and Coreference
%D 2018
%8 June
%I Association for Computational Linguistics
%C New Orleans, Louisiana
%F roesiger-etal-2018-integrating
%X Cases of coreference and bridging resolution often require knowledge about semantic relations between anaphors and antecedents. We suggest state-of-the-art neural-network classifiers trained on relation benchmarks to predict and integrate likelihoods for relations. Two experiments with representations differing in noise and complexity improve our bridging but not our coreference resolver.
%R 10.18653/v1/W18-0705
%U https://aclanthology.org/W18-0705
%U https://doi.org/10.18653/v1/W18-0705
%P 44-49
Markdown (Informal)
[Integrating Predictions from Neural-Network Relation Classifiers into Coreference and Bridging Resolution](https://aclanthology.org/W18-0705) (Roesiger et al., CRAC 2018)
ACL