@inproceedings{mykowiecka-etal-2018-detecting,
title = "Detecting Figurative Word Occurrences Using Recurrent Neural Networks",
author = "Mykowiecka, Agnieszka and
Wawer, Aleksander and
Marciniak, Malgorzata",
editor = "Beigman Klebanov, Beata and
Shutova, Ekaterina and
Lichtenstein, Patricia and
Muresan, Smaranda and
Wee, Chee",
booktitle = "Proceedings of the Workshop on Figurative Language Processing",
month = jun,
year = "2018",
address = "New Orleans, Louisiana",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/W18-0916/",
doi = "10.18653/v1/W18-0916",
pages = "124--127",
abstract = "The paper addresses detection of figurative usage of words in English text. The chosen method was to use neural nets fed by pretrained word embeddings. The obtained results show that simple solutions, based on words embeddings only, are comparable to complex solutions, using many sources of information which are not available for languages less-studied than English."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="mykowiecka-etal-2018-detecting">
<titleInfo>
<title>Detecting Figurative Word Occurrences Using Recurrent Neural Networks</title>
</titleInfo>
<name type="personal">
<namePart type="given">Agnieszka</namePart>
<namePart type="family">Mykowiecka</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Aleksander</namePart>
<namePart type="family">Wawer</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Malgorzata</namePart>
<namePart type="family">Marciniak</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2018-06</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Workshop on Figurative Language Processing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Beata</namePart>
<namePart type="family">Beigman Klebanov</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ekaterina</namePart>
<namePart type="family">Shutova</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Patricia</namePart>
<namePart type="family">Lichtenstein</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Smaranda</namePart>
<namePart type="family">Muresan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Chee</namePart>
<namePart type="family">Wee</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">New Orleans, Louisiana</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>The paper addresses detection of figurative usage of words in English text. The chosen method was to use neural nets fed by pretrained word embeddings. The obtained results show that simple solutions, based on words embeddings only, are comparable to complex solutions, using many sources of information which are not available for languages less-studied than English.</abstract>
<identifier type="citekey">mykowiecka-etal-2018-detecting</identifier>
<identifier type="doi">10.18653/v1/W18-0916</identifier>
<location>
<url>https://aclanthology.org/W18-0916/</url>
</location>
<part>
<date>2018-06</date>
<extent unit="page">
<start>124</start>
<end>127</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Detecting Figurative Word Occurrences Using Recurrent Neural Networks
%A Mykowiecka, Agnieszka
%A Wawer, Aleksander
%A Marciniak, Malgorzata
%Y Beigman Klebanov, Beata
%Y Shutova, Ekaterina
%Y Lichtenstein, Patricia
%Y Muresan, Smaranda
%Y Wee, Chee
%S Proceedings of the Workshop on Figurative Language Processing
%D 2018
%8 June
%I Association for Computational Linguistics
%C New Orleans, Louisiana
%F mykowiecka-etal-2018-detecting
%X The paper addresses detection of figurative usage of words in English text. The chosen method was to use neural nets fed by pretrained word embeddings. The obtained results show that simple solutions, based on words embeddings only, are comparable to complex solutions, using many sources of information which are not available for languages less-studied than English.
%R 10.18653/v1/W18-0916
%U https://aclanthology.org/W18-0916/
%U https://doi.org/10.18653/v1/W18-0916
%P 124-127
Markdown (Informal)
[Detecting Figurative Word Occurrences Using Recurrent Neural Networks](https://aclanthology.org/W18-0916/) (Mykowiecka et al., Fig-Lang 2018)
ACL