@inproceedings{wadhwa-etal-2018-towards,
title = "Towards Inference-Oriented Reading Comprehension: {P}arallel{QA}",
author = "Wadhwa, Soumya and
Embar, Varsha and
Grabmair, Matthias and
Nyberg, Eric",
editor = "Bisk, Yonatan and
Levy, Omer and
Yatskar, Mark",
booktitle = "Proceedings of the Workshop on Generalization in the Age of Deep Learning",
month = jun,
year = "2018",
address = "New Orleans, Louisiana",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/W18-1001/",
doi = "10.18653/v1/W18-1001",
pages = "1--7",
abstract = "In this paper, we investigate the tendency of end-to-end neural Machine Reading Comprehension (MRC) models to match shallow patterns rather than perform inference-oriented reasoning on RC benchmarks. We aim to test the ability of these systems to answer questions which focus on referential inference. We propose ParallelQA, a strategy to formulate such questions using parallel passages. We also demonstrate that existing neural models fail to generalize well to this setting."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="wadhwa-etal-2018-towards">
<titleInfo>
<title>Towards Inference-Oriented Reading Comprehension: ParallelQA</title>
</titleInfo>
<name type="personal">
<namePart type="given">Soumya</namePart>
<namePart type="family">Wadhwa</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Varsha</namePart>
<namePart type="family">Embar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Matthias</namePart>
<namePart type="family">Grabmair</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Eric</namePart>
<namePart type="family">Nyberg</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2018-06</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Workshop on Generalization in the Age of Deep Learning</title>
</titleInfo>
<name type="personal">
<namePart type="given">Yonatan</namePart>
<namePart type="family">Bisk</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Omer</namePart>
<namePart type="family">Levy</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mark</namePart>
<namePart type="family">Yatskar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">New Orleans, Louisiana</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>In this paper, we investigate the tendency of end-to-end neural Machine Reading Comprehension (MRC) models to match shallow patterns rather than perform inference-oriented reasoning on RC benchmarks. We aim to test the ability of these systems to answer questions which focus on referential inference. We propose ParallelQA, a strategy to formulate such questions using parallel passages. We also demonstrate that existing neural models fail to generalize well to this setting.</abstract>
<identifier type="citekey">wadhwa-etal-2018-towards</identifier>
<identifier type="doi">10.18653/v1/W18-1001</identifier>
<location>
<url>https://aclanthology.org/W18-1001/</url>
</location>
<part>
<date>2018-06</date>
<extent unit="page">
<start>1</start>
<end>7</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Towards Inference-Oriented Reading Comprehension: ParallelQA
%A Wadhwa, Soumya
%A Embar, Varsha
%A Grabmair, Matthias
%A Nyberg, Eric
%Y Bisk, Yonatan
%Y Levy, Omer
%Y Yatskar, Mark
%S Proceedings of the Workshop on Generalization in the Age of Deep Learning
%D 2018
%8 June
%I Association for Computational Linguistics
%C New Orleans, Louisiana
%F wadhwa-etal-2018-towards
%X In this paper, we investigate the tendency of end-to-end neural Machine Reading Comprehension (MRC) models to match shallow patterns rather than perform inference-oriented reasoning on RC benchmarks. We aim to test the ability of these systems to answer questions which focus on referential inference. We propose ParallelQA, a strategy to formulate such questions using parallel passages. We also demonstrate that existing neural models fail to generalize well to this setting.
%R 10.18653/v1/W18-1001
%U https://aclanthology.org/W18-1001/
%U https://doi.org/10.18653/v1/W18-1001
%P 1-7
Markdown (Informal)
[Towards Inference-Oriented Reading Comprehension: ParallelQA](https://aclanthology.org/W18-1001/) (Wadhwa et al., Gen-Deep 2018)
ACL