@inproceedings{ahuja-etal-2018-makes,
title = "What makes us laugh? Investigations into Automatic Humor Classification",
author = "Ahuja, Vikram and
Bali, Taradheesh and
Singh, Navjyoti",
editor = "Nissim, Malvina and
Patti, Viviana and
Plank, Barbara and
Wagner, Claudia",
booktitle = "Proceedings of the Second Workshop on Computational Modeling of People{'}s Opinions, Personality, and Emotions in Social Media",
month = jun,
year = "2018",
address = "New Orleans, Louisiana, USA",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/W18-1101",
doi = "10.18653/v1/W18-1101",
pages = "1--9",
abstract = "Most scholarly works in the field of computational detection of humour derive their inspiration from the incongruity theory. Incongruity is an indispensable facet in drawing a line between humorous and non-humorous occurrences but is immensely inadequate in shedding light on what actually made the particular occurrence a funny one. Classical theories like Script-based Semantic Theory of Humour and General Verbal Theory of Humour try and achieve this feat to an adequate extent. In this paper we adhere to a more holistic approach towards classification of humour based on these classical theories with a few improvements and revisions. Through experiments based on our linear approach and performed on large data-sets of jokes, we are able to demonstrate the adaptability and show componentizability of our model, and that a host of classification techniques can be used to overcome the challenging problem of distinguishing between various categories and sub-categories of jokes.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="ahuja-etal-2018-makes">
<titleInfo>
<title>What makes us laugh? Investigations into Automatic Humor Classification</title>
</titleInfo>
<name type="personal">
<namePart type="given">Vikram</namePart>
<namePart type="family">Ahuja</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Taradheesh</namePart>
<namePart type="family">Bali</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Navjyoti</namePart>
<namePart type="family">Singh</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2018-06</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Second Workshop on Computational Modeling of People’s Opinions, Personality, and Emotions in Social Media</title>
</titleInfo>
<name type="personal">
<namePart type="given">Malvina</namePart>
<namePart type="family">Nissim</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Viviana</namePart>
<namePart type="family">Patti</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Barbara</namePart>
<namePart type="family">Plank</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Claudia</namePart>
<namePart type="family">Wagner</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">New Orleans, Louisiana, USA</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Most scholarly works in the field of computational detection of humour derive their inspiration from the incongruity theory. Incongruity is an indispensable facet in drawing a line between humorous and non-humorous occurrences but is immensely inadequate in shedding light on what actually made the particular occurrence a funny one. Classical theories like Script-based Semantic Theory of Humour and General Verbal Theory of Humour try and achieve this feat to an adequate extent. In this paper we adhere to a more holistic approach towards classification of humour based on these classical theories with a few improvements and revisions. Through experiments based on our linear approach and performed on large data-sets of jokes, we are able to demonstrate the adaptability and show componentizability of our model, and that a host of classification techniques can be used to overcome the challenging problem of distinguishing between various categories and sub-categories of jokes.</abstract>
<identifier type="citekey">ahuja-etal-2018-makes</identifier>
<identifier type="doi">10.18653/v1/W18-1101</identifier>
<location>
<url>https://aclanthology.org/W18-1101</url>
</location>
<part>
<date>2018-06</date>
<extent unit="page">
<start>1</start>
<end>9</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T What makes us laugh? Investigations into Automatic Humor Classification
%A Ahuja, Vikram
%A Bali, Taradheesh
%A Singh, Navjyoti
%Y Nissim, Malvina
%Y Patti, Viviana
%Y Plank, Barbara
%Y Wagner, Claudia
%S Proceedings of the Second Workshop on Computational Modeling of People’s Opinions, Personality, and Emotions in Social Media
%D 2018
%8 June
%I Association for Computational Linguistics
%C New Orleans, Louisiana, USA
%F ahuja-etal-2018-makes
%X Most scholarly works in the field of computational detection of humour derive their inspiration from the incongruity theory. Incongruity is an indispensable facet in drawing a line between humorous and non-humorous occurrences but is immensely inadequate in shedding light on what actually made the particular occurrence a funny one. Classical theories like Script-based Semantic Theory of Humour and General Verbal Theory of Humour try and achieve this feat to an adequate extent. In this paper we adhere to a more holistic approach towards classification of humour based on these classical theories with a few improvements and revisions. Through experiments based on our linear approach and performed on large data-sets of jokes, we are able to demonstrate the adaptability and show componentizability of our model, and that a host of classification techniques can be used to overcome the challenging problem of distinguishing between various categories and sub-categories of jokes.
%R 10.18653/v1/W18-1101
%U https://aclanthology.org/W18-1101
%U https://doi.org/10.18653/v1/W18-1101
%P 1-9
Markdown (Informal)
[What makes us laugh? Investigations into Automatic Humor Classification](https://aclanthology.org/W18-1101) (Ahuja et al., PEOPLES 2018)
ACL