@inproceedings{papay-etal-2018-addressing,
title = "Addressing Low-Resource Scenarios with Character-aware Embeddings",
author = "Papay, Sean and
Pad{\'o}, Sebastian and
Vu, Ngoc Thang",
editor = {Faruqui, Manaal and
Sch{\"u}tze, Hinrich and
Trancoso, Isabel and
Tsvetkov, Yulia and
Yaghoobzadeh, Yadollah},
booktitle = "Proceedings of the Second Workshop on Subword/Character {LE}vel Models",
month = jun,
year = "2018",
address = "New Orleans",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/W18-1204/",
doi = "10.18653/v1/W18-1204",
pages = "32--37",
abstract = "Most modern approaches to computing word embeddings assume the availability of text corpora with billions of words. In this paper, we explore a setup where only corpora with millions of words are available, and many words in any new text are out of vocabulary. This setup is both of practical interests {--} modeling the situation for specific domains and low-resource languages {--} and of psycholinguistic interest, since it corresponds much more closely to the actual experiences and challenges of human language learning and use. We compare standard skip-gram word embeddings with character-based embeddings on word relatedness prediction. Skip-grams excel on large corpora, while character-based embeddings do well on small corpora generally and rare and complex words specifically. The models can be combined easily."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="papay-etal-2018-addressing">
<titleInfo>
<title>Addressing Low-Resource Scenarios with Character-aware Embeddings</title>
</titleInfo>
<name type="personal">
<namePart type="given">Sean</namePart>
<namePart type="family">Papay</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sebastian</namePart>
<namePart type="family">Padó</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ngoc</namePart>
<namePart type="given">Thang</namePart>
<namePart type="family">Vu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2018-06</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Second Workshop on Subword/Character LEvel Models</title>
</titleInfo>
<name type="personal">
<namePart type="given">Manaal</namePart>
<namePart type="family">Faruqui</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hinrich</namePart>
<namePart type="family">Schütze</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Isabel</namePart>
<namePart type="family">Trancoso</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yulia</namePart>
<namePart type="family">Tsvetkov</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yadollah</namePart>
<namePart type="family">Yaghoobzadeh</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">New Orleans</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Most modern approaches to computing word embeddings assume the availability of text corpora with billions of words. In this paper, we explore a setup where only corpora with millions of words are available, and many words in any new text are out of vocabulary. This setup is both of practical interests – modeling the situation for specific domains and low-resource languages – and of psycholinguistic interest, since it corresponds much more closely to the actual experiences and challenges of human language learning and use. We compare standard skip-gram word embeddings with character-based embeddings on word relatedness prediction. Skip-grams excel on large corpora, while character-based embeddings do well on small corpora generally and rare and complex words specifically. The models can be combined easily.</abstract>
<identifier type="citekey">papay-etal-2018-addressing</identifier>
<identifier type="doi">10.18653/v1/W18-1204</identifier>
<location>
<url>https://aclanthology.org/W18-1204/</url>
</location>
<part>
<date>2018-06</date>
<extent unit="page">
<start>32</start>
<end>37</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Addressing Low-Resource Scenarios with Character-aware Embeddings
%A Papay, Sean
%A Padó, Sebastian
%A Vu, Ngoc Thang
%Y Faruqui, Manaal
%Y Schütze, Hinrich
%Y Trancoso, Isabel
%Y Tsvetkov, Yulia
%Y Yaghoobzadeh, Yadollah
%S Proceedings of the Second Workshop on Subword/Character LEvel Models
%D 2018
%8 June
%I Association for Computational Linguistics
%C New Orleans
%F papay-etal-2018-addressing
%X Most modern approaches to computing word embeddings assume the availability of text corpora with billions of words. In this paper, we explore a setup where only corpora with millions of words are available, and many words in any new text are out of vocabulary. This setup is both of practical interests – modeling the situation for specific domains and low-resource languages – and of psycholinguistic interest, since it corresponds much more closely to the actual experiences and challenges of human language learning and use. We compare standard skip-gram word embeddings with character-based embeddings on word relatedness prediction. Skip-grams excel on large corpora, while character-based embeddings do well on small corpora generally and rare and complex words specifically. The models can be combined easily.
%R 10.18653/v1/W18-1204
%U https://aclanthology.org/W18-1204/
%U https://doi.org/10.18653/v1/W18-1204
%P 32-37
Markdown (Informal)
[Addressing Low-Resource Scenarios with Character-aware Embeddings](https://aclanthology.org/W18-1204/) (Papay et al., SCLeM 2018)
ACL