@inproceedings{banerjee-bhattacharyya-2018-meaningless,
title = "Meaningless yet meaningful: Morphology grounded subword-level {NMT}",
author = "Banerjee, Tamali and
Bhattacharyya, Pushpak",
editor = {Faruqui, Manaal and
Sch{\"u}tze, Hinrich and
Trancoso, Isabel and
Tsvetkov, Yulia and
Yaghoobzadeh, Yadollah},
booktitle = "Proceedings of the Second Workshop on Subword/Character {LE}vel Models",
month = jun,
year = "2018",
address = "New Orleans",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/W18-1207",
doi = "10.18653/v1/W18-1207",
pages = "55--60",
abstract = "We explore the use of two independent subsystems Byte Pair Encoding (BPE) and Morfessor as basic units for subword-level neural machine translation (NMT). We show that, for linguistically distant language-pairs Morfessor-based segmentation algorithm produces significantly better quality translation than BPE. However, for close language-pairs BPE-based subword-NMT may translate better than Morfessor-based subword-NMT. We propose a combined approach of these two segmentation algorithms Morfessor-BPE (M-BPE) which outperforms these two baseline systems in terms of BLEU score. Our results are supported by experiments on three language-pairs: English-Hindi, Bengali-Hindi and English-Bengali.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="banerjee-bhattacharyya-2018-meaningless">
<titleInfo>
<title>Meaningless yet meaningful: Morphology grounded subword-level NMT</title>
</titleInfo>
<name type="personal">
<namePart type="given">Tamali</namePart>
<namePart type="family">Banerjee</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Pushpak</namePart>
<namePart type="family">Bhattacharyya</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2018-06</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Second Workshop on Subword/Character LEvel Models</title>
</titleInfo>
<name type="personal">
<namePart type="given">Manaal</namePart>
<namePart type="family">Faruqui</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hinrich</namePart>
<namePart type="family">Schütze</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Isabel</namePart>
<namePart type="family">Trancoso</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yulia</namePart>
<namePart type="family">Tsvetkov</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yadollah</namePart>
<namePart type="family">Yaghoobzadeh</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">New Orleans</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We explore the use of two independent subsystems Byte Pair Encoding (BPE) and Morfessor as basic units for subword-level neural machine translation (NMT). We show that, for linguistically distant language-pairs Morfessor-based segmentation algorithm produces significantly better quality translation than BPE. However, for close language-pairs BPE-based subword-NMT may translate better than Morfessor-based subword-NMT. We propose a combined approach of these two segmentation algorithms Morfessor-BPE (M-BPE) which outperforms these two baseline systems in terms of BLEU score. Our results are supported by experiments on three language-pairs: English-Hindi, Bengali-Hindi and English-Bengali.</abstract>
<identifier type="citekey">banerjee-bhattacharyya-2018-meaningless</identifier>
<identifier type="doi">10.18653/v1/W18-1207</identifier>
<location>
<url>https://aclanthology.org/W18-1207</url>
</location>
<part>
<date>2018-06</date>
<extent unit="page">
<start>55</start>
<end>60</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Meaningless yet meaningful: Morphology grounded subword-level NMT
%A Banerjee, Tamali
%A Bhattacharyya, Pushpak
%Y Faruqui, Manaal
%Y Schütze, Hinrich
%Y Trancoso, Isabel
%Y Tsvetkov, Yulia
%Y Yaghoobzadeh, Yadollah
%S Proceedings of the Second Workshop on Subword/Character LEvel Models
%D 2018
%8 June
%I Association for Computational Linguistics
%C New Orleans
%F banerjee-bhattacharyya-2018-meaningless
%X We explore the use of two independent subsystems Byte Pair Encoding (BPE) and Morfessor as basic units for subword-level neural machine translation (NMT). We show that, for linguistically distant language-pairs Morfessor-based segmentation algorithm produces significantly better quality translation than BPE. However, for close language-pairs BPE-based subword-NMT may translate better than Morfessor-based subword-NMT. We propose a combined approach of these two segmentation algorithms Morfessor-BPE (M-BPE) which outperforms these two baseline systems in terms of BLEU score. Our results are supported by experiments on three language-pairs: English-Hindi, Bengali-Hindi and English-Bengali.
%R 10.18653/v1/W18-1207
%U https://aclanthology.org/W18-1207
%U https://doi.org/10.18653/v1/W18-1207
%P 55-60
Markdown (Informal)
[Meaningless yet meaningful: Morphology grounded subword-level NMT](https://aclanthology.org/W18-1207) (Banerjee & Bhattacharyya, SCLeM 2018)
ACL