@inproceedings{skianis-etal-2018-fusing,
    title = "Fusing Document, Collection and Label Graph-based Representations with Word Embeddings for Text Classification",
    author = "Skianis, Konstantinos  and
      Malliaros, Fragkiskos  and
      Vazirgiannis, Michalis",
    editor = "Glava{\v{s}}, Goran  and
      Somasundaran, Swapna  and
      Riedl, Martin  and
      Hovy, Eduard",
    booktitle = "Proceedings of the Twelfth Workshop on Graph-Based Methods for Natural Language Processing ({T}ext{G}raphs-12)",
    month = jun,
    year = "2018",
    address = "New Orleans, Louisiana, USA",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/W18-1707/",
    doi = "10.18653/v1/W18-1707",
    pages = "49--58",
    abstract = "Contrary to the traditional Bag-of-Words approach, we consider the Graph-of-Words(GoW) model in which each document is represented by a graph that encodes relationships between the different terms. Based on this formulation, the importance of a term is determined by weighting the corresponding node in the document, collection and label graphs, using node centrality criteria. We also introduce novel graph-based weighting schemes by enriching graphs with word-embedding similarities, in order to reward or penalize semantic relationships. Our methods produce more discriminative feature weights for text categorization, outperforming existing frequency-based criteria."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="skianis-etal-2018-fusing">
    <titleInfo>
        <title>Fusing Document, Collection and Label Graph-based Representations with Word Embeddings for Text Classification</title>
    </titleInfo>
    <name type="personal">
        <namePart type="given">Konstantinos</namePart>
        <namePart type="family">Skianis</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Fragkiskos</namePart>
        <namePart type="family">Malliaros</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Michalis</namePart>
        <namePart type="family">Vazirgiannis</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <originInfo>
        <dateIssued>2018-06</dateIssued>
    </originInfo>
    <typeOfResource>text</typeOfResource>
    <relatedItem type="host">
        <titleInfo>
            <title>Proceedings of the Twelfth Workshop on Graph-Based Methods for Natural Language Processing (TextGraphs-12)</title>
        </titleInfo>
        <name type="personal">
            <namePart type="given">Goran</namePart>
            <namePart type="family">Glavaš</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Swapna</namePart>
            <namePart type="family">Somasundaran</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Martin</namePart>
            <namePart type="family">Riedl</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Eduard</namePart>
            <namePart type="family">Hovy</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <originInfo>
            <publisher>Association for Computational Linguistics</publisher>
            <place>
                <placeTerm type="text">New Orleans, Louisiana, USA</placeTerm>
            </place>
        </originInfo>
        <genre authority="marcgt">conference publication</genre>
    </relatedItem>
    <abstract>Contrary to the traditional Bag-of-Words approach, we consider the Graph-of-Words(GoW) model in which each document is represented by a graph that encodes relationships between the different terms. Based on this formulation, the importance of a term is determined by weighting the corresponding node in the document, collection and label graphs, using node centrality criteria. We also introduce novel graph-based weighting schemes by enriching graphs with word-embedding similarities, in order to reward or penalize semantic relationships. Our methods produce more discriminative feature weights for text categorization, outperforming existing frequency-based criteria.</abstract>
    <identifier type="citekey">skianis-etal-2018-fusing</identifier>
    <identifier type="doi">10.18653/v1/W18-1707</identifier>
    <location>
        <url>https://aclanthology.org/W18-1707/</url>
    </location>
    <part>
        <date>2018-06</date>
        <extent unit="page">
            <start>49</start>
            <end>58</end>
        </extent>
    </part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Fusing Document, Collection and Label Graph-based Representations with Word Embeddings for Text Classification
%A Skianis, Konstantinos
%A Malliaros, Fragkiskos
%A Vazirgiannis, Michalis
%Y Glavaš, Goran
%Y Somasundaran, Swapna
%Y Riedl, Martin
%Y Hovy, Eduard
%S Proceedings of the Twelfth Workshop on Graph-Based Methods for Natural Language Processing (TextGraphs-12)
%D 2018
%8 June
%I Association for Computational Linguistics
%C New Orleans, Louisiana, USA
%F skianis-etal-2018-fusing
%X Contrary to the traditional Bag-of-Words approach, we consider the Graph-of-Words(GoW) model in which each document is represented by a graph that encodes relationships between the different terms. Based on this formulation, the importance of a term is determined by weighting the corresponding node in the document, collection and label graphs, using node centrality criteria. We also introduce novel graph-based weighting schemes by enriching graphs with word-embedding similarities, in order to reward or penalize semantic relationships. Our methods produce more discriminative feature weights for text categorization, outperforming existing frequency-based criteria.
%R 10.18653/v1/W18-1707
%U https://aclanthology.org/W18-1707/
%U https://doi.org/10.18653/v1/W18-1707
%P 49-58
Markdown (Informal)
[Fusing Document, Collection and Label Graph-based Representations with Word Embeddings for Text Classification](https://aclanthology.org/W18-1707/) (Skianis et al., TextGraphs 2018)
ACL