@inproceedings{skianis-etal-2018-fusing,
title = "Fusing Document, Collection and Label Graph-based Representations with Word Embeddings for Text Classification",
author = "Skianis, Konstantinos and
Malliaros, Fragkiskos and
Vazirgiannis, Michalis",
editor = "Glava{\v{s}}, Goran and
Somasundaran, Swapna and
Riedl, Martin and
Hovy, Eduard",
booktitle = "Proceedings of the Twelfth Workshop on Graph-Based Methods for Natural Language Processing ({T}ext{G}raphs-12)",
month = jun,
year = "2018",
address = "New Orleans, Louisiana, USA",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/W18-1707/",
doi = "10.18653/v1/W18-1707",
pages = "49--58",
abstract = "Contrary to the traditional Bag-of-Words approach, we consider the Graph-of-Words(GoW) model in which each document is represented by a graph that encodes relationships between the different terms. Based on this formulation, the importance of a term is determined by weighting the corresponding node in the document, collection and label graphs, using node centrality criteria. We also introduce novel graph-based weighting schemes by enriching graphs with word-embedding similarities, in order to reward or penalize semantic relationships. Our methods produce more discriminative feature weights for text categorization, outperforming existing frequency-based criteria."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="skianis-etal-2018-fusing">
<titleInfo>
<title>Fusing Document, Collection and Label Graph-based Representations with Word Embeddings for Text Classification</title>
</titleInfo>
<name type="personal">
<namePart type="given">Konstantinos</namePart>
<namePart type="family">Skianis</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Fragkiskos</namePart>
<namePart type="family">Malliaros</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Michalis</namePart>
<namePart type="family">Vazirgiannis</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2018-06</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Twelfth Workshop on Graph-Based Methods for Natural Language Processing (TextGraphs-12)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Goran</namePart>
<namePart type="family">Glavaš</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Swapna</namePart>
<namePart type="family">Somasundaran</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Martin</namePart>
<namePart type="family">Riedl</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Eduard</namePart>
<namePart type="family">Hovy</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">New Orleans, Louisiana, USA</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Contrary to the traditional Bag-of-Words approach, we consider the Graph-of-Words(GoW) model in which each document is represented by a graph that encodes relationships between the different terms. Based on this formulation, the importance of a term is determined by weighting the corresponding node in the document, collection and label graphs, using node centrality criteria. We also introduce novel graph-based weighting schemes by enriching graphs with word-embedding similarities, in order to reward or penalize semantic relationships. Our methods produce more discriminative feature weights for text categorization, outperforming existing frequency-based criteria.</abstract>
<identifier type="citekey">skianis-etal-2018-fusing</identifier>
<identifier type="doi">10.18653/v1/W18-1707</identifier>
<location>
<url>https://aclanthology.org/W18-1707/</url>
</location>
<part>
<date>2018-06</date>
<extent unit="page">
<start>49</start>
<end>58</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Fusing Document, Collection and Label Graph-based Representations with Word Embeddings for Text Classification
%A Skianis, Konstantinos
%A Malliaros, Fragkiskos
%A Vazirgiannis, Michalis
%Y Glavaš, Goran
%Y Somasundaran, Swapna
%Y Riedl, Martin
%Y Hovy, Eduard
%S Proceedings of the Twelfth Workshop on Graph-Based Methods for Natural Language Processing (TextGraphs-12)
%D 2018
%8 June
%I Association for Computational Linguistics
%C New Orleans, Louisiana, USA
%F skianis-etal-2018-fusing
%X Contrary to the traditional Bag-of-Words approach, we consider the Graph-of-Words(GoW) model in which each document is represented by a graph that encodes relationships between the different terms. Based on this formulation, the importance of a term is determined by weighting the corresponding node in the document, collection and label graphs, using node centrality criteria. We also introduce novel graph-based weighting schemes by enriching graphs with word-embedding similarities, in order to reward or penalize semantic relationships. Our methods produce more discriminative feature weights for text categorization, outperforming existing frequency-based criteria.
%R 10.18653/v1/W18-1707
%U https://aclanthology.org/W18-1707/
%U https://doi.org/10.18653/v1/W18-1707
%P 49-58
Markdown (Informal)
[Fusing Document, Collection and Label Graph-based Representations with Word Embeddings for Text Classification](https://aclanthology.org/W18-1707/) (Skianis et al., TextGraphs 2018)
ACL