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Abstract
This paper investigates the robustness of NLP against perturbed word forms. While neural

approaches can achieve (almost) human-like accuracy for certain tasks and conditions, they

often are sensitive to small changes in the input such as non-canonical input (e.g., typos). Yet

both stability and robustness are desired properties in applications involving user-generated

content, and all the more so as humans easily cope with such noisy or adversary conditions.

In this paper, we study the impact of noisy input. We consider different noise distributions

(different density and different types) and mismatched noise distributions for training and test-

ing. Moreover, we empirically evaluate the robustness of different models (convolutional neu-

ral networks, recurrent neural networks, non-neural models), different basic units (characters,

byte pair encoding units, and words), and different NLP tasks (morphological tagging, machine

translation). Our experiments confirm that (i) noisy input substantially degrades the output of

models trained on clean data, that (ii) training on noisy data can help models achieve perfor-

mance on noisy data similar to that of models trained on clean data tested on clean data, that (iii)

models trained noisy data can achieve good results on noisy data almost without performance

loss on clean data, that (iv) error type mismatches between training and test data can have a

greater impact than error density mismatches, that (v) character based approaches are almost

always better than byte pair encoding (BPE) approaches with noisy data, that (vi) the choice

of neural models (recurrent, convolutional) is not significant, and that (vii) for morphological

tagging, under the same data conditions, the neural models outperform a conditional random

field (CRF) based model.

1 Introduction

In this paper, we study the effect of non-normalized text on natural language processing (NLP).

Non-normalized text includes non-canonical word forms, noisy word forms, and word forms

with ”small” perturbations, such as informal spellings, typos, scrambled words. Compared

to normalized text, the variability of non-normalized text is much greater and aggravates the

problem of data sparsity.

Non-normalized text dominates in many real world applications. Similar to humans, ide-

ally NLP should perform reliably and robustly also under suboptimal or even adversarial condi-

tions, without a significant degradation in performance. Web-based content and social media are

a rich source for noisy and informal text. Noise can also be introduced in a downstream NLP
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application where errors are propagated from one module to the next. For example, speech

translation where the machine translation (MT) module needs to be robust against errors in-

troduced by the automatic speech recognition (ASR) module. Moreover, NLP should not be

vulnerable to adversarial input examples. While all these examples do not pose a real challenge

to an experienced human reader, even ”small” perturbations from the canonical form can make

a state-of-the-art NLP system fail.

To illustrate the typical behavior of state-of-the-art NLP on normalized and non-

normalized text, we discuss an example in the context of neural MT (NMT). Different research

groups have shown that NMT can generate natural and fluent translations (Bentivogli et al.,

2016), achieving human-like performance in certain settings (Wu et al., 2016). The state-of-

the-art NMT engine Google Translate1, for example, perfectly translates the English sentence

I used my card to purchase a meal on the menu and the total on my receipt was $ 8.95 but when I
went on line to check my transaction it shows $ 10.74 .
into the German sentence

Ich benutzte meine Karte , um eine Mahlzeit auf der Speisekarte zu kaufen und die Gesamtsumme
auf meiner Quittung war $ 8,95 , aber als ich online ging , um meine Transaktion zu überprüfen , zeigt es
$ 10,74 .
Adding some noise to the source sentence by swapping a few neighboring characters, e.g.,

I used my card ot purchase a meal no the mneu and the total no my receipt was $ 8.95 but whne I
went on line to check ym transaction it show $ 1.074 .
confuses the same NMT engine considerably:

Ich benutzte meine Karte ot Kauf eine Mahlzeit nicht die Mneu und die insgesamt nicht meine Quit-
tung war $ 8,95 aber whne ging ich auf Linie zu überprüfen ym Transaktion es $ 1.074 .
By contrast, an experienced human reader can still understand and correctly translate the noisy

sentence and compensate for some information loss (including real word errors such as ”no”

vs. ”on”, but rather not ”10.74” vs. ”1.074”), with little additional effort and often not even

noticing ”small” perturbations.

One might argue that a good translation should in fact translate corrupted language into

corrupted language. Here, we rather adopt the position that the objective is to preserve the

intended content and meaning of a sentence regardless of noise.

It should be noted that neural networks with sufficient capacity, in particular recurrent neu-

ral networks, are universal function approximators (Schäfer and Zimmermann, 2006). Hence,

the performance degradation on non-normalized text is not so much a question whether the

model can capture the variability but rather how to train a robust model. In particular, it can be

expected that training on noisy data will make NLP more robust, as it was successfully demon-

strated for other application domains including vision (Cui et al., 2015) and speech recognition

(Doulaty et al., 2016).

In this paper, we empirically evaluate the robustness of different models (convolutional

neural networks, recurrent neural networks, non-neural models), different basic units (charac-

ters, byte pair encoding units), and different NLP tasks (morphological tagging, NMT). Due to

easy availability and to have more control on the experimental setup with respect to error type

and error density, we use synthetic data generated from existing clean corpora by perturbing the

word forms. The perturbations include character flips and swaps of neighboring characters to

imitate typos, and word scrambling.

The contributions of this paper are the following. Our experiments confirm that (i) noisy

input substantially degrades the output of models trained on clean data. The experiments show

that (ii) training on noisy data can help models achieve performance on noisy data similar to

that of models trained on clean data tested on clean data, that (iii) models trained noisy data

1https://translate.google.com/, February 2017
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can achieve good results on noisy data almost without performance loss on clean data, that

(iv) error type mismatches between training and test data can have a greater impact than error
density mismatches, that (v) character based approaches are almost always better than byte pair

encoding (BPE) approaches with noisy data, that (vi) the choice of neural models (recurrent,

convolutional) is not as significant, and that (vii) for morphological tagging, under the same

data conditions, the neural models outperform a conditional random field (CRF) based model.

The remainder of the paper is organized as follows. Section 2 discusses related work.

Section 3 describes the noise types and Section 4 briefly summarizes the modeling approaches

used in this paper. Experimental results are shown and discussed in Section 5. The paper is

concluded in Section 6.

2 Related Work

A large body of work on regularization techniques to learn robust representations and mod-

els exists. Examples include �2-regularization, dropout (Hinton et al., 2012), Jacobian-based

sensitivity penalty (Rifai et al., 2011; Li et al., 2016), and data noising. Compared to other

application domains such as vision (LeCun et al., 1998; Goodfellow et al., 2014) and speech

(Lippmann et al., 1987; Tüske et al., 2014; Cui et al., 2015; Doulaty et al., 2016), work on noisy

data (Gimpel et al., 2011; Derczynski et al., 2013; Plank, 2016) and in particular data noising

(Yitong et al., 2017), do not have a long and extensive history in NLP.

While invariance transformations such as rotation, translation in vision or vocal tract

length, reverberation, and noise in speech have all been harnessed, we do not have a good

intuition on useful perturbations for written language yet. Label dropout and flip (cf. typos)

have been proposed both on the byte-level (Gillick et al., 2015) and the word-level (Xie et al.,

2017). Syntactic and semantic noise for semantic analysis was studied in Yitong et al. (2017).

From a human perception perspective, word scrambling may be of interest (Rawlinson, 1976;

Rayner et al., 2006).

The arbitrary relationship between the orthography of a word and its meaning in general

is a well known assumption in linguistics (de Saussure, 1916). However, the word form often

carries additional important information. This is, for example, the case in morphologically rich

languages or in non-normalized text where small perturbations result in similar word forms.

Recently, sub-word units have attracted some attention in NLP to handle rarely and unseen

words and to reduce the computational complexity in neural network approaches (Ling et al.,

2015; Gillick et al., 2015; Sennrich et al., 2015; Chung et al., 2016; Heigold et al., 2017).

Examples for sub-word units include BPE based units Sennrich et al. (2015), characters (Ling

et al., 2015; Chung et al., 2016; Heigold et al., 2017) or even bytes (Gillick et al., 2015). A

comparison of BPE and characters for machine translation regarding grammaticality can be

found in Sennrich (2016). Similarly Sajjad et al. (2017) showed that BPE worked better for MT

and char-based models worked better for part-of-speech (POS) tagging.

3 Noise Types

In this work, we experiment with three different noise types: character swaps, character flips,

and word scrambling. Character flips and swaps are rough approximations to typos. Word

scrambling is motivated from psycholinguistic studies (Rawlinson, 1976). This choice of noise

types allows us to automatically generate noisy text with different type and density distributions

from existing properly edited ”clean” corpora. Using synthetic data is clearly suboptimal, but

we use synthetic data because of their easy availability and because it gives us better control on

the experimental setup.
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Character swaps This type of perturbation randomly swaps two neighboring characters in

a word. The words are processed from left to right. A swap is performed at each position

with a pre-defined probability. Hence, movements from the left to the right beyond neighboring

characters are possible. A character-swapped version (10% swapping probability) of the clean

example sentence in the introduction may look like this:

I used my card ot purchase a meal no the mneu and the total no my receipt was $ 8.95 but whne I went on

line to check ym transaction it show $ 1.074 .

Word scrambling Humans appear to be good at reading scrambled text2. In a word scramble,

the characters can be in an arbitrary order. The only constraint is that the first and last character

be at the right place. In particular, all word scrambles are assumed to be equally likely. A

scrambled version of the clean example sentence in the introduction may look like this:

I uesd my card to pchasure a mael on the mneu and the ttaol on my repciet was $ 89.5 but wehn I went on

line to chcek my tanrsactoin it sohw $ 1.074 .

Clearly, some word scrambles are easier than others. Word scrambling approximately includes

character swaps.

Character flips This type of perturbation randomly replaces a character with another char-

acter at a pre-specified rate. Characters are drawn uniformly, but special symbols (e.g., end of

stream) are excluded. We do not assume any correlation across characters. A character-flipped

version (10% flipping probability) of the clean example sentence in the introduction may look

like this:

I used my car¿ to purch.s’ a meal on the menu and the total on my receipv tas $ 8.95 but whe3 = wen+ on

lin4 to chece my tran&awtion it shzw $ 10.74 .

Character flips preserve the order of characters but replace some information with random

information, whereas character swaps and word scrambling relax the order of characters but do

not add random information. Other simple perturbations include randomly removing or adding

(in particular, repeating) characters.

In the experimental section, we will consider different noise distributions (as regards den-

sity and types of noise) and mismatched noise distributions for training and testing.

A word of length n with at most one character flip can have up to nC different word forms,

where C denotes the number of characters in the vocabulary. Word scrambling multiplies the

number of word forms by a factor of (n − 2)!. In general, perturbing word forms introduces a

great deal of variability and data becomes much more sparse, implying that efficient handling

of rare and unseen words will be crucial.

4 Modeling

This section briefly summarizes the modeling approaches used in this work. First, we address

the choice of unit. As illustrated in Table 1 on an example from the UD English corpus3, a word-

based unit does not seem to be an appropriate unit in the presence of perturbations. Any change

of the word form implies a different, independent word index. Even worse, most perturbed word

forms do not represent valid words and are mapped to the <unk>-token and no word-specific

information is preserved. This suggests the use of sub-word units. Here, we use BPE units

(Sennrich et al., 2015) and characters as the basic units.

BPE is based on character co-occurrence frequency distributions and has the effect of rep-

resenting frequent words as whole words and splitting rare words into sub-word units (e.g.,

2http://www.mrc-cbu.cam.ac.uk/people/matt-davis/cmabridge/, note the word scramble in

the URL!
3http://universaldependencies.org/
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”used” as ”used”, ”purchase” as ”purcha@@se”). BPE provides a good tradeoff between mod-

eling efficiency (i.e., the model does not need to learn for the frequent words how to assemble

them) and handling unknown words. However, BPE may not be efficient at representing noisy

word forms as small perturbations can lead to a different representation using different BPE

units (e.g., ”used” vs. ”u@@es@@d”, ”purcha@@se” vs. ”p@@cha@@sure”). As the example

illustrates (Table 1), perturbations tend to break longer units into smaller units, which makes

the use of whole word units less useful.

Finally, characters as the basic units have similar representations for similar word forms,

but result in longer sequences, which makes the modeling of long-range dependencies harder

and increases the computational complexity. It should be noted that the lower the BPE size is,

the closer BPE is to character based encoding and the higher the BPE size is, the closer it is to

word-based approaches.

Table 1: Clean (left) vs. scrambled (right) example sentence using a word-based (top), a BPE-based

(middle), and a character-based (bottom) representation

I used my card to purchase a meal on the menu and

the total on my receipt was $ 8.95 but when i went

on line to check my transaction it show $ 10.74 .

I <unk> my card to <unk> a <unk> on the <unk>

and the <unk> on my <unk> was $ 89.5 but <unk>

i went on line to <unk> my <unk> it <unk> $

1.074 .

I used my c@@ ard to purcha@@ se a me@@ al on

the men@@ u and the to@@ tal on my recei@@ pt

was $ 8@@ .@@ 9@@ 5 but when I went on line

to check my trans@@ action it show $ 10@@ .@@

7@@ 4 .

I u@@ es@@ d my c@@ ard to p@@ cha@@ sure a

ma@@ el on the m@@ ne@@ u and the t@@ ta@@ ol

on my rep@@ ci@@ et was $ 8@@ 9@@ .@@ 5 but

we@@ h@@ n I went on line to ch@@ c@@e@@ k

my t@@ on@@ tri@@ as@@ ac@@ n it so@@ h@@

w $ 1@@ .@@ 0@@ 7@@ 4 .
I used my card to purchase a meal

on the menu and the total on my

receipt was $ 8.95 but when i

went on line to check my

transaction it show $ 10.74 .

I uesd my card to pchasure a mael

on the mneu and the ttaol on my

repciet was $ 89.5 but wehn I

went on line to chcek my

tanrsactoin it sohw $ 1.074 .

Noise modeling for a word-level system is straightforward as perturbed word forms are

mapped to <unk>, i.e., noise modeling reduces to word-level label dropout (and rarely word-

level label flips) (Xie et al., 2017). This is not true for sub-word level representations, for which

more detailed noise modeling will be important.

We use model architectures based on recurrent and convolutional neural networks in this

work. Assuming that a word segmentation is given, we first map the sub-word units of a word to

a word vector and then continue as for word-based approaches. Deep neural networks are uni-

versal function approximators (Schäfer and Zimmermann, 2006). Hence, a neural network with

sufficient capacity is expected to learn the variability induced by perturbations. We compare the

neural networks with a conditional random field (Lafferty et al., 2001).

5 Experiments

In this section, we empirically evaluate the robustness against perturbed word forms (Section 3)

for the two common NLP tasks morphological tagging and machine translation.

5.1 Morphological Tagging
We used the model configurations and setups from Heigold et al. (2017) for the morphological

tagging experiments in this paper. Training and testing was performed on the UD English data
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set4. Figure 1 summarizes the results. We explored the three main dimensions of noise type and
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Figure 1: Noise behavior for morphological tagging for different models and units on UD English test

data. Upper left: character-based LSTM-BLSTM. Upper right: character-based CNNHighway-BLSTM.

Lower left: BPE-based LSTM-BLSTM. Lower right: MarMoT (CRF).

distribution, choice of unit, and type of model. Noise-adaptive training means standard training

on noisy input sentences (but with correct labels: rich morphological tags or target language

translation). We distinguish the noise type and distribution used for training (”training noise

type”) and testing (”test noise type”).

We start our discussion with the upper left histogram in Figure 1 for the character-based

LSTM-BLSTM architecture. It shows a clear performance degradation from around 95%

to around 80% tag accuracy across all noise types compared to when trained on clean data

(”clean”). Here, we consider the noise types word scrambling (”scramble”, note that all words

are scrambled), character swaps with probability 10% (”swap@10%), and character flips with

probability 10% (”flip@10%”). Bar groups 2, 3 and 4 in the upper left histogram in Figure 1

show that noise-adaptive training helps in all cases, bringing the tag accuracy back to above

90% and without substantially affecting the accuracy on clean data. As expected, the accu-

racy under matched training and test conditions is highest in all cases. The transferability from

a noise type to another depends on the noise types. For example, noise-adaptive training for

”swap@10%” improves the accuracy on the ”scramble” test condition by approximately 10%.

On the other hand, the ”flip@10%” test condition gets slightly worse. This outcome may be ex-

pected because characters swaps are more closely related with word scrambling than character

flips. The transferability does not need to be symmetric. An example is ”flip@10%”-adaptive

4http://universaldependencies.org/
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training which improves on the ”swap@10%” and ”scramble” test conditions, whereas we ob-

serve slight degradation in the opposite direction.

Finally, can we train a model that performs well across all these noise types as well as on

clean data? For this, we mixed different noise types at the sentence level for training (”com-

bined”), i.e., a clean sentence, followed by a sentence with scrambling inside words, followed

by a sentence with swapped characters inside words, followed by a sentence with flipped char-

acters inside words, and so forth in the training data. The test data, by contrast, was pure clean

(”clean”), scrambled (”scramble”), swapped (”swap@10%”), or flipped (”flip@10%”) data.

According to the results summarized in the final group of bars in the upper left histogram in

Figure1, this is approximately possible. This result again suggests that noise strongly impacts

on models trained on clean data, and that injecting noise at training time is critical but the exact

noise distribution is not so important in this case.

The upper left and lower left histograms in Figure 1 differ in the choice of unit on the input

text side, ”char-LSTM-BLSTM” uses characters and ”bpe-LSTM-BLSTM” 2,000 BPE units5.

The overall behavior is similar, but characters seem to degrade more gracefully than BPE units

for mismatched noise conditions (compare bar columns 2, 3 and 4 between the upper left and

lower left histograms in Figure 1).

Finally, we explore how different models behave on noisy input (compare bar columns 2,

3 and 4 between the upper left, upper right and lower right histograms in Figure 1). For this, we

compare a char-LSTM-BLSTM, a char-CNNHighway-BLSTM (same as char-LSTM-BLSTM

but uses a convolutional neural network to compute the word vectors) (Heigold et al., 2017),

and a conditional random field (Müller and Schütze, 2015) including word-based features and

prefix/suffix features up to length 10 for rare words (we used MarMoT6 for the experiments).

The upper left, upper right and lower right histograms in Figure1 show that the qualitative

behavior of the three models is very similar. char-LSTM-BLSTM and char-CNNHighway-

BLSTM achieve similar performance. One might speculate if char-LSTM-BLSTM is slightly

better at flip@10% and char-CNNHighway-BLSTM at swap@10% and word scrambling, but

the differences are most likely not significant. MarMoT’s tag accuracies for all noise conditions

is worse by 5-10%.

As indicated above, Figure 1 shows results on English morphological tagging. In a suite

of experiments (not shown here in full detail for reasons of space) we have confirmed similar

overall results for morphologically-richer languages such as German. Morphological tagging

for German is much harder than for English: while the English UD training data exhibit 119

distinct types of sequences of POS tags followed by morphological feature descriptions, the

TIGER training data for German exhibit 681 distinct types of such sequences.

To give one result from our German experiments, Figure 2 shows the dependency of the test

accuracy on the amount of character flips in the test data, for various amounts of character flips

in training. Assuming an average word length of 6 characters, 10% character flips correspond

with one typo in every second word, 20% character flips with one typo per word, and 30%

character flips with two typos per word. This result suggests that injecting noise at training time

is critical, whereas the test accuracy does not depend so much on the exact amount of training

noise (curves for 10%, 20% and 30% character flips) and that models trained on noise injected

data are still able to tag clean data with almost no loss in performance compared to a model

trained on clean data only.

Morphological tagging is a sequence-to-sequence labelling task, where (to a first approxi-

5In neural MT, BPE size is usually around 50,000. For morphological tagging we adjust the number of BPE units

according to the amount of data: the UD English training data roughly includes 2,000 unique words with at least 10

occurrences. For our NMT based experiments in Section 5.2, we use the customary BPE setting in NMT.
6http://cistern.cis.lmu.de/marmot/
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Figure 2: Noise density (mis-) matches-effect of amount of character flips in training and testing for

morphological tagging on German TIGER test data

mation) the number and order of elements in the two sequences is the same (each word/token is

paired with a POS tag plus morphological description). Translation is arguably a much harder

task as it often relates sequences of different lengths with possibly substantial changes in the or-

der of corresponding words/tokens between source and target and, compared to morphological

tagging, much larger sizes of output vocabularies. In a second set of experiments, we explore

the impact and handling of noise in the input to machine translation.

5.2 Machine Translation

Our NMT setup is based on the setup in Heigold and van Genabith (2016). We use BPE units or

characters as the basic units at the source side and always BPE units at the target side (following

common practice in our experiments we use a BPE size of 50,000), resulting in the two model

configurations ”BPE-BPE” and ”char-BPE”. For the character-based encoder, we assume the

word segmentation and map the word string consisting of characters or BPE units to a word vec-

tor by a two-layer unidirectional LSTM. The baseline model (”clean”) is trained on the German-

English (DE-EN) parallel corpora provided by WMT’167. Results for the newstest2016-deen

data set are shown in Table 2. For noise-adaptive training, we perform transfer learning on the

perturbed source sentence-target sentence pairs (”noise-adapted”). For training, we choose the

following sentence-level noise distribution: 50% clean sentences, 20% sentences with character

swaps (5% swap probability), 10% sentences with word scrambles, and 20% sentences with

character flips (5% flip probability). We refer to this noise distribution as ”noisy.” Beside this

”noisy” noise distribution, we also use mismatched noise conditions at test time, consisting of

a single noise type only, referred to as ”clean”, ”swap@5%”, ”scramble”, and ”flip@5%”.

7http://www.statmt.org/wmt16/translation-task.html
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Table 2: BLEU on newstest2016-deen for clean and noisy NMT and different test noise types

Test BPE-BPE char-BPE

noise noise- noise-

type clean adapted clean adapted

clean 31.6 30.4 30.7 30.6

swap@5% 19.8 25.0 25.0 29.2

scramble 3.6 9.4 5.4 20.0

flip@5% 16.1 22.5 21.7 27.1

noisy 21.9 25.6 21.1 28.5

The baseline’s performance drop for noisy test data is drastic and clearly depends on the

noise type. Word scrambling seems to be the hardest noise type, for which BLEU goes down

from around 30 to around 5 for BPE-BPE and char-BPE. Overall, however, the results suggest

that the char-BPE baseline degrades much more gracefully than the BPE-BPE baseline.

The results in Table 2 show that noise-adaptive training can considerably improve the

performance on noisy data and the gap between clean and noisy conditions can be almost closed

for the ”easy” noise conditions. Similar to the baseline, char-BPE tends to be less sensitive to

mismatched noise conditions. This may be best seen from the fact that char-BPE performs

better or no worse than BPE-BPE for all noise conditions. Moreover, noise-adaptive training

does not affect BLEU for char-BPE (30.7 vs. 30.6) but there is a small performance penalty

for BPE-BPE (31.6 vs. 30.4). Furthermore, the ”noisy” BLEU is the highest among the noisy

conditions for BPE-BPE while the ”swap@5%” BLEU is the best for char-BPE.

We show an example for the different noise types and source representations in Table 3.

The example reflects the general findings based on BLEU scores (Table 2). The example also

highlights the potential difficulty of correctly translating proper names in noisy conditions.

6 Conclusion

In this paper, we presented an empirical study on morphological tagging and machine trans-

lation for noisy input. Mostly as expected from other application domains such as vision and

speech, we found that state-of-the-art NLP systems are very sensitive to slightly perturbed word

forms that do not pose a challenge to humans and that injecting noise at training time can im-

prove the robustness of such systems considerably. The best results were observed for matched

training and test noise conditions but generalization across certain noise type and noise distribu-

tions is possible. Character-based approaches seem to degrade more gracefully compared with

BPE-based approaches. We observe similar overall trends across tasks (morphological tagging

and machine translation) and languages (English and German for morphological tagging). The

results in this paper are promising but should be taken with a grain of salt as we used synthetic

data based on a limited number of idealized perturbation types. Future work will aim at a better

comprehension of relevant and hard or even adversarial perturbations and noise types (includ-

ing noisy sentence structure) in language and testing on real noisy user input. Moreover, the

observation that the lower the BPE size is, the closer BPE is to character based encoding and

the higher the BPE size is, the closer BPE is to word based approaches, will allow us to tune

the system for the optimal granularity, providing a good tradeoff between quality, efficiency

and robustness. A reasonable assumption is that the error correction is task-independent and

could be trained independently of the actual NLP task, or shared across NLP tasks and jointly
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optimized.
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Table 3: Example sentence for different noise types (clean, character swaps, word scrambling, character

flips) and NMT configurations (BPE/characters and standard training/noise-adaptive training)

source Herr Modi befindet sich auf einer fünftägigen Reise nach Japan , um die wirtschaftlichen Beziehungen mit

(clean) der drittgrößten Wirtschaftsnation der Welt zu festigen .

unadapted Mr Modi is on a five-day trip to Japan to consolidate economic relations with the world ’s third largest

(BPE-BPE) economies .

noise-adapted Mr Modi is on a five-day trip to Japan to consolidate economic relations with the third largest economic

(BPE-BPE) nation in the world .

unadapted Mr Modi is on a five-day trip to Japan to consolidate economic relations with the world ’s third largest

(char-BPE) economy .

noise-adapted Mr Prodi is on a five-day trip to Japan in order to consolidate economic relations with the world ’s third

(char-BPE) largest economy.

source Herr Modi befindet sich auf einer fünftägigen Reise nach Japan, um die wirtschaftlichen Beziehungen mit

(swap@5%) der rdtitgrößten Wirtschaftsnation der Welt zu festiegn.

unadapted Mr Modi is on a five-day trip to Japan to entrench economic relations with the world ’s most basic economic

nation .

noise-adapted Mr Modi is on a five-day trip to Japan to establish economic relations with the world ’s largest economic

(BPE-BPE) nation .

unadapted Mr Modi is on a five-day trip to Japan to establish economic relations with the world’s largest economy.

noise-adapted Mr Prodi is on a five-day trip to Japan in order to consolidate economic relations with the world’s third

(char-BPE) largest economy.

source Hrer Modi bfdneeit scih auf eienr fggnefüiätn Reise ncah Jpaan , um die wctathhilsfecirn Buzegehnein mit

(scramble) der drtiößettrgn Wsfactohtairsntin der Welt zu fgteesin .

unadapted Hrer modes Bfdneeit scih on eienr fggnefün journey ncah Jpaan to get the wctathsusfecirn Buzehno with the

drone Wsfactohtairsntin in the world .

noise-adapted Mr Modi is looking forward to a successful trip to Jpaan in order to find the scientific evidence with the

(BPE-BPE) world ’s largest economy in the world .

unadapted Hear is a member of the United States of America and the United States of America .

noise-adapted Mr Prodi is working on a fictitious journey to Japan in order to address economic relations with the world ’s

(char-BPE) third largest economy .

source Herr Modi befindet sicC 0uf einer fünftägigen Reise nach Japan , u” die wirtsch átlichen Beziehungen mi4

(flip@5%) dLr drittgrößten Wirtschaftsn,tion der Welt zu f?stigen .

unadapted Mr. Modi is located at sicC 0uf a five-day trip to Japan , u” the wiring relations mi4 dLr third-largest

economy of the world .

noise-adapted Mr Modi is on a five-day trip to Japan to promote economic relations with the world ’s third largest

(BPE-BPE) economy .

unadapted Mr Modi is going to Japan on a five-day trip to Japan to fudge economic relations with the world’s third

largest economy .

noise-adapted Mr Prodi is on a five-day trip to Japan to consolidate economic relations with the world ’s third largest

(char-BPE) economy .
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