@inproceedings{jeblee-etal-2018-multi,
    title = "Multi-task learning for interpretable cause of death classification using key phrase prediction",
    author = "Jeblee, Serena  and
      Gomes, Mireille  and
      Hirst, Graeme",
    editor = "Demner-Fushman, Dina  and
      Cohen, Kevin Bretonnel  and
      Ananiadou, Sophia  and
      Tsujii, Junichi",
    booktitle = "Proceedings of the {B}io{NLP} 2018 workshop",
    month = jul,
    year = "2018",
    address = "Melbourne, Australia",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/W18-2302/",
    doi = "10.18653/v1/W18-2302",
    pages = "12--17",
    abstract = "We introduce a multi-task learning model for cause-of-death classification of verbal autopsy narratives that jointly learns to output interpretable key phrases. Adding these key phrases outperforms the baseline model and topic modeling features."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="jeblee-etal-2018-multi">
    <titleInfo>
        <title>Multi-task learning for interpretable cause of death classification using key phrase prediction</title>
    </titleInfo>
    <name type="personal">
        <namePart type="given">Serena</namePart>
        <namePart type="family">Jeblee</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Mireille</namePart>
        <namePart type="family">Gomes</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Graeme</namePart>
        <namePart type="family">Hirst</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <originInfo>
        <dateIssued>2018-07</dateIssued>
    </originInfo>
    <typeOfResource>text</typeOfResource>
    <relatedItem type="host">
        <titleInfo>
            <title>Proceedings of the BioNLP 2018 workshop</title>
        </titleInfo>
        <name type="personal">
            <namePart type="given">Dina</namePart>
            <namePart type="family">Demner-Fushman</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Kevin</namePart>
            <namePart type="given">Bretonnel</namePart>
            <namePart type="family">Cohen</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Sophia</namePart>
            <namePart type="family">Ananiadou</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Junichi</namePart>
            <namePart type="family">Tsujii</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <originInfo>
            <publisher>Association for Computational Linguistics</publisher>
            <place>
                <placeTerm type="text">Melbourne, Australia</placeTerm>
            </place>
        </originInfo>
        <genre authority="marcgt">conference publication</genre>
    </relatedItem>
    <abstract>We introduce a multi-task learning model for cause-of-death classification of verbal autopsy narratives that jointly learns to output interpretable key phrases. Adding these key phrases outperforms the baseline model and topic modeling features.</abstract>
    <identifier type="citekey">jeblee-etal-2018-multi</identifier>
    <identifier type="doi">10.18653/v1/W18-2302</identifier>
    <location>
        <url>https://aclanthology.org/W18-2302/</url>
    </location>
    <part>
        <date>2018-07</date>
        <extent unit="page">
            <start>12</start>
            <end>17</end>
        </extent>
    </part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Multi-task learning for interpretable cause of death classification using key phrase prediction
%A Jeblee, Serena
%A Gomes, Mireille
%A Hirst, Graeme
%Y Demner-Fushman, Dina
%Y Cohen, Kevin Bretonnel
%Y Ananiadou, Sophia
%Y Tsujii, Junichi
%S Proceedings of the BioNLP 2018 workshop
%D 2018
%8 July
%I Association for Computational Linguistics
%C Melbourne, Australia
%F jeblee-etal-2018-multi
%X We introduce a multi-task learning model for cause-of-death classification of verbal autopsy narratives that jointly learns to output interpretable key phrases. Adding these key phrases outperforms the baseline model and topic modeling features.
%R 10.18653/v1/W18-2302
%U https://aclanthology.org/W18-2302/
%U https://doi.org/10.18653/v1/W18-2302
%P 12-17
Markdown (Informal)
[Multi-task learning for interpretable cause of death classification using key phrase prediction](https://aclanthology.org/W18-2302/) (Jeblee et al., BioNLP 2018)
ACL