@inproceedings{jeblee-etal-2018-multi,
title = "Multi-task learning for interpretable cause of death classification using key phrase prediction",
author = "Jeblee, Serena and
Gomes, Mireille and
Hirst, Graeme",
editor = "Demner-Fushman, Dina and
Cohen, Kevin Bretonnel and
Ananiadou, Sophia and
Tsujii, Junichi",
booktitle = "Proceedings of the {B}io{NLP} 2018 workshop",
month = jul,
year = "2018",
address = "Melbourne, Australia",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/W18-2302/",
doi = "10.18653/v1/W18-2302",
pages = "12--17",
abstract = "We introduce a multi-task learning model for cause-of-death classification of verbal autopsy narratives that jointly learns to output interpretable key phrases. Adding these key phrases outperforms the baseline model and topic modeling features."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="jeblee-etal-2018-multi">
<titleInfo>
<title>Multi-task learning for interpretable cause of death classification using key phrase prediction</title>
</titleInfo>
<name type="personal">
<namePart type="given">Serena</namePart>
<namePart type="family">Jeblee</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mireille</namePart>
<namePart type="family">Gomes</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Graeme</namePart>
<namePart type="family">Hirst</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2018-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the BioNLP 2018 workshop</title>
</titleInfo>
<name type="personal">
<namePart type="given">Dina</namePart>
<namePart type="family">Demner-Fushman</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kevin</namePart>
<namePart type="given">Bretonnel</namePart>
<namePart type="family">Cohen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sophia</namePart>
<namePart type="family">Ananiadou</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Junichi</namePart>
<namePart type="family">Tsujii</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Melbourne, Australia</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We introduce a multi-task learning model for cause-of-death classification of verbal autopsy narratives that jointly learns to output interpretable key phrases. Adding these key phrases outperforms the baseline model and topic modeling features.</abstract>
<identifier type="citekey">jeblee-etal-2018-multi</identifier>
<identifier type="doi">10.18653/v1/W18-2302</identifier>
<location>
<url>https://aclanthology.org/W18-2302/</url>
</location>
<part>
<date>2018-07</date>
<extent unit="page">
<start>12</start>
<end>17</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Multi-task learning for interpretable cause of death classification using key phrase prediction
%A Jeblee, Serena
%A Gomes, Mireille
%A Hirst, Graeme
%Y Demner-Fushman, Dina
%Y Cohen, Kevin Bretonnel
%Y Ananiadou, Sophia
%Y Tsujii, Junichi
%S Proceedings of the BioNLP 2018 workshop
%D 2018
%8 July
%I Association for Computational Linguistics
%C Melbourne, Australia
%F jeblee-etal-2018-multi
%X We introduce a multi-task learning model for cause-of-death classification of verbal autopsy narratives that jointly learns to output interpretable key phrases. Adding these key phrases outperforms the baseline model and topic modeling features.
%R 10.18653/v1/W18-2302
%U https://aclanthology.org/W18-2302/
%U https://doi.org/10.18653/v1/W18-2302
%P 12-17
Markdown (Informal)
[Multi-task learning for interpretable cause of death classification using key phrase prediction](https://aclanthology.org/W18-2302/) (Jeblee et al., BioNLP 2018)
ACL