@inproceedings{chokwijitkul-etal-2018-identifying,
title = "Identifying Risk Factors For Heart Disease in Electronic Medical Records: A Deep Learning Approach",
author = "Chokwijitkul, Thanat and
Nguyen, Anthony and
Hassanzadeh, Hamed and
Perez, Siegfried",
editor = "Demner-Fushman, Dina and
Cohen, Kevin Bretonnel and
Ananiadou, Sophia and
Tsujii, Junichi",
booktitle = "Proceedings of the {B}io{NLP} 2018 workshop",
month = jul,
year = "2018",
address = "Melbourne, Australia",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/W18-2303/",
doi = "10.18653/v1/W18-2303",
pages = "18--27",
abstract = "Automatic identification of heart disease risk factors in clinical narratives can expedite disease progression modelling and support clinical decisions. Existing practical solutions for cardiovascular risk detection are mostly hybrid systems entailing the integration of knowledge-driven and data-driven methods, relying on dictionaries, rules and machine learning methods that require a substantial amount of human effort. This paper proposes a comparative analysis on the applicability of deep learning, a re-emerged data-driven technique, in the context of clinical text classification. Various deep learning architectures were devised and evaluated for extracting heart disease risk factors from clinical documents. The data provided for the 2014 i2b2/UTHealth shared task focusing on identifying risk factors for heart disease was used for system development and evaluation. Results have shown that a relatively simple deep learning model can achieve a high micro-averaged F-measure of 0.9081, which is comparable to the best systems from the shared task. This is highly encouraging given the simplicity of the deep learning approach compared to the heavily feature-engineered hybrid approaches that were required to achieve state-of-the-art performances."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="chokwijitkul-etal-2018-identifying">
<titleInfo>
<title>Identifying Risk Factors For Heart Disease in Electronic Medical Records: A Deep Learning Approach</title>
</titleInfo>
<name type="personal">
<namePart type="given">Thanat</namePart>
<namePart type="family">Chokwijitkul</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Anthony</namePart>
<namePart type="family">Nguyen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hamed</namePart>
<namePart type="family">Hassanzadeh</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Siegfried</namePart>
<namePart type="family">Perez</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2018-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the BioNLP 2018 workshop</title>
</titleInfo>
<name type="personal">
<namePart type="given">Dina</namePart>
<namePart type="family">Demner-Fushman</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kevin</namePart>
<namePart type="given">Bretonnel</namePart>
<namePart type="family">Cohen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sophia</namePart>
<namePart type="family">Ananiadou</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Junichi</namePart>
<namePart type="family">Tsujii</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Melbourne, Australia</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Automatic identification of heart disease risk factors in clinical narratives can expedite disease progression modelling and support clinical decisions. Existing practical solutions for cardiovascular risk detection are mostly hybrid systems entailing the integration of knowledge-driven and data-driven methods, relying on dictionaries, rules and machine learning methods that require a substantial amount of human effort. This paper proposes a comparative analysis on the applicability of deep learning, a re-emerged data-driven technique, in the context of clinical text classification. Various deep learning architectures were devised and evaluated for extracting heart disease risk factors from clinical documents. The data provided for the 2014 i2b2/UTHealth shared task focusing on identifying risk factors for heart disease was used for system development and evaluation. Results have shown that a relatively simple deep learning model can achieve a high micro-averaged F-measure of 0.9081, which is comparable to the best systems from the shared task. This is highly encouraging given the simplicity of the deep learning approach compared to the heavily feature-engineered hybrid approaches that were required to achieve state-of-the-art performances.</abstract>
<identifier type="citekey">chokwijitkul-etal-2018-identifying</identifier>
<identifier type="doi">10.18653/v1/W18-2303</identifier>
<location>
<url>https://aclanthology.org/W18-2303/</url>
</location>
<part>
<date>2018-07</date>
<extent unit="page">
<start>18</start>
<end>27</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Identifying Risk Factors For Heart Disease in Electronic Medical Records: A Deep Learning Approach
%A Chokwijitkul, Thanat
%A Nguyen, Anthony
%A Hassanzadeh, Hamed
%A Perez, Siegfried
%Y Demner-Fushman, Dina
%Y Cohen, Kevin Bretonnel
%Y Ananiadou, Sophia
%Y Tsujii, Junichi
%S Proceedings of the BioNLP 2018 workshop
%D 2018
%8 July
%I Association for Computational Linguistics
%C Melbourne, Australia
%F chokwijitkul-etal-2018-identifying
%X Automatic identification of heart disease risk factors in clinical narratives can expedite disease progression modelling and support clinical decisions. Existing practical solutions for cardiovascular risk detection are mostly hybrid systems entailing the integration of knowledge-driven and data-driven methods, relying on dictionaries, rules and machine learning methods that require a substantial amount of human effort. This paper proposes a comparative analysis on the applicability of deep learning, a re-emerged data-driven technique, in the context of clinical text classification. Various deep learning architectures were devised and evaluated for extracting heart disease risk factors from clinical documents. The data provided for the 2014 i2b2/UTHealth shared task focusing on identifying risk factors for heart disease was used for system development and evaluation. Results have shown that a relatively simple deep learning model can achieve a high micro-averaged F-measure of 0.9081, which is comparable to the best systems from the shared task. This is highly encouraging given the simplicity of the deep learning approach compared to the heavily feature-engineered hybrid approaches that were required to achieve state-of-the-art performances.
%R 10.18653/v1/W18-2303
%U https://aclanthology.org/W18-2303/
%U https://doi.org/10.18653/v1/W18-2303
%P 18-27
Markdown (Informal)
[Identifying Risk Factors For Heart Disease in Electronic Medical Records: A Deep Learning Approach](https://aclanthology.org/W18-2303/) (Chokwijitkul et al., BioNLP 2018)
ACL