@inproceedings{singhania-etal-2018-statistical,
title = "Statistical Machine Transliteration Baselines for {NEWS} 2018",
author = "Singhania, Snigdha and
Nguyen, Minh and
Ngo, Gia H. and
Chen, Nancy",
editor = "Chen, Nancy and
Banchs, Rafael E. and
Duan, Xiangyu and
Zhang, Min and
Li, Haizhou",
booktitle = "Proceedings of the Seventh Named Entities Workshop",
month = jul,
year = "2018",
address = "Melbourne, Australia",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/W18-2410/",
doi = "10.18653/v1/W18-2410",
pages = "74--78",
abstract = "This paper reports the results of our trans-literation experiments conducted on NEWS 2018 Shared Task dataset. We focus on creating the baseline systems trained using two open-source, statistical transliteration tools, namely Sequitur and Moses. We discuss the pre-processing steps performed on this dataset for both the systems. We also provide a re-ranking system which uses top hypotheses from Sequitur and Moses to create a consolidated list of transliterations. The results obtained from each of these models can be used to present a good starting point for the participating teams."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="singhania-etal-2018-statistical">
<titleInfo>
<title>Statistical Machine Transliteration Baselines for NEWS 2018</title>
</titleInfo>
<name type="personal">
<namePart type="given">Snigdha</namePart>
<namePart type="family">Singhania</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Minh</namePart>
<namePart type="family">Nguyen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Gia</namePart>
<namePart type="given">H</namePart>
<namePart type="family">Ngo</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nancy</namePart>
<namePart type="family">Chen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2018-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Seventh Named Entities Workshop</title>
</titleInfo>
<name type="personal">
<namePart type="given">Nancy</namePart>
<namePart type="family">Chen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Rafael</namePart>
<namePart type="given">E</namePart>
<namePart type="family">Banchs</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xiangyu</namePart>
<namePart type="family">Duan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Min</namePart>
<namePart type="family">Zhang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Haizhou</namePart>
<namePart type="family">Li</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Melbourne, Australia</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>This paper reports the results of our trans-literation experiments conducted on NEWS 2018 Shared Task dataset. We focus on creating the baseline systems trained using two open-source, statistical transliteration tools, namely Sequitur and Moses. We discuss the pre-processing steps performed on this dataset for both the systems. We also provide a re-ranking system which uses top hypotheses from Sequitur and Moses to create a consolidated list of transliterations. The results obtained from each of these models can be used to present a good starting point for the participating teams.</abstract>
<identifier type="citekey">singhania-etal-2018-statistical</identifier>
<identifier type="doi">10.18653/v1/W18-2410</identifier>
<location>
<url>https://aclanthology.org/W18-2410/</url>
</location>
<part>
<date>2018-07</date>
<extent unit="page">
<start>74</start>
<end>78</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Statistical Machine Transliteration Baselines for NEWS 2018
%A Singhania, Snigdha
%A Nguyen, Minh
%A Ngo, Gia H.
%A Chen, Nancy
%Y Chen, Nancy
%Y Banchs, Rafael E.
%Y Duan, Xiangyu
%Y Zhang, Min
%Y Li, Haizhou
%S Proceedings of the Seventh Named Entities Workshop
%D 2018
%8 July
%I Association for Computational Linguistics
%C Melbourne, Australia
%F singhania-etal-2018-statistical
%X This paper reports the results of our trans-literation experiments conducted on NEWS 2018 Shared Task dataset. We focus on creating the baseline systems trained using two open-source, statistical transliteration tools, namely Sequitur and Moses. We discuss the pre-processing steps performed on this dataset for both the systems. We also provide a re-ranking system which uses top hypotheses from Sequitur and Moses to create a consolidated list of transliterations. The results obtained from each of these models can be used to present a good starting point for the participating teams.
%R 10.18653/v1/W18-2410
%U https://aclanthology.org/W18-2410/
%U https://doi.org/10.18653/v1/W18-2410
%P 74-78
Markdown (Informal)
[Statistical Machine Transliteration Baselines for NEWS 2018](https://aclanthology.org/W18-2410/) (Singhania et al., NEWS 2018)
ACL