@inproceedings{agirre-etal-2018-risk,
title = "The risk of sub-optimal use of Open Source {NLP} Software: {UKB} is inadvertently state-of-the-art in knowledge-based {WSD}",
author = "Agirre, Eneko and
L{\'o}pez de Lacalle, Oier and
Soroa, Aitor",
editor = "Park, Eunjeong L. and
Hagiwara, Masato and
Milajevs, Dmitrijs and
Tan, Liling",
booktitle = "Proceedings of Workshop for {NLP} Open Source Software ({NLP}-{OSS})",
month = jul,
year = "2018",
address = "Melbourne, Australia",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/W18-2505/",
doi = "10.18653/v1/W18-2505",
pages = "29--33",
abstract = "UKB is an open source collection of programs for performing, among other tasks, Knowledge-Based Word Sense Disambiguation (WSD). Since it was released in 2009 it has been often used out-of-the-box in sub-optimal settings. We show that nine years later it is the state-of-the-art on knowledge-based WSD. This case shows the pitfalls of releasing open source NLP software without optimal default settings and precise instructions for reproducibility."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="agirre-etal-2018-risk">
<titleInfo>
<title>The risk of sub-optimal use of Open Source NLP Software: UKB is inadvertently state-of-the-art in knowledge-based WSD</title>
</titleInfo>
<name type="personal">
<namePart type="given">Eneko</namePart>
<namePart type="family">Agirre</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Oier</namePart>
<namePart type="family">López de Lacalle</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Aitor</namePart>
<namePart type="family">Soroa</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2018-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of Workshop for NLP Open Source Software (NLP-OSS)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Eunjeong</namePart>
<namePart type="given">L</namePart>
<namePart type="family">Park</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Masato</namePart>
<namePart type="family">Hagiwara</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Dmitrijs</namePart>
<namePart type="family">Milajevs</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Liling</namePart>
<namePart type="family">Tan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Melbourne, Australia</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>UKB is an open source collection of programs for performing, among other tasks, Knowledge-Based Word Sense Disambiguation (WSD). Since it was released in 2009 it has been often used out-of-the-box in sub-optimal settings. We show that nine years later it is the state-of-the-art on knowledge-based WSD. This case shows the pitfalls of releasing open source NLP software without optimal default settings and precise instructions for reproducibility.</abstract>
<identifier type="citekey">agirre-etal-2018-risk</identifier>
<identifier type="doi">10.18653/v1/W18-2505</identifier>
<location>
<url>https://aclanthology.org/W18-2505/</url>
</location>
<part>
<date>2018-07</date>
<extent unit="page">
<start>29</start>
<end>33</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T The risk of sub-optimal use of Open Source NLP Software: UKB is inadvertently state-of-the-art in knowledge-based WSD
%A Agirre, Eneko
%A López de Lacalle, Oier
%A Soroa, Aitor
%Y Park, Eunjeong L.
%Y Hagiwara, Masato
%Y Milajevs, Dmitrijs
%Y Tan, Liling
%S Proceedings of Workshop for NLP Open Source Software (NLP-OSS)
%D 2018
%8 July
%I Association for Computational Linguistics
%C Melbourne, Australia
%F agirre-etal-2018-risk
%X UKB is an open source collection of programs for performing, among other tasks, Knowledge-Based Word Sense Disambiguation (WSD). Since it was released in 2009 it has been often used out-of-the-box in sub-optimal settings. We show that nine years later it is the state-of-the-art on knowledge-based WSD. This case shows the pitfalls of releasing open source NLP software without optimal default settings and precise instructions for reproducibility.
%R 10.18653/v1/W18-2505
%U https://aclanthology.org/W18-2505/
%U https://doi.org/10.18653/v1/W18-2505
%P 29-33
Markdown (Informal)
[The risk of sub-optimal use of Open Source NLP Software: UKB is inadvertently state-of-the-art in knowledge-based WSD](https://aclanthology.org/W18-2505/) (Agirre et al., NLPOSS 2018)
ACL