A Systematic Classification of Knowledge, Reasoning, and Context within the ARC Dataset

Michael Boratko, Harshit Padigela, Divyendra Mikkilineni, Pritish Yuvraj, Rajarshi Das, Andrew McCallum, Maria Chang, Achille Fokoue-Nkoutche, Pavan Kapanipathi, Nicholas Mattei, Ryan Musa, Kartik Talamadupula, Michael Witbrock


Abstract
The recent work of Clark et al. (2018) introduces the AI2 Reasoning Challenge (ARC) and the associated ARC dataset that partitions open domain, complex science questions into easy and challenge sets. That paper includes an analysis of 100 questions with respect to the types of knowledge and reasoning required to answer them; however, it does not include clear definitions of these types, nor does it offer information about the quality of the labels. We propose a comprehensive set of definitions of knowledge and reasoning types necessary for answering the questions in the ARC dataset. Using ten annotators and a sophisticated annotation interface, we analyze the distribution of labels across the challenge set and statistics related to them. Additionally, we demonstrate that although naive information retrieval methods return sentences that are irrelevant to answering the query, sufficient supporting text is often present in the (ARC) corpus. Evaluating with human-selected relevant sentences improves the performance of a neural machine comprehension model by 42 points.
Anthology ID:
W18-2607
Volume:
Proceedings of the Workshop on Machine Reading for Question Answering
Month:
July
Year:
2018
Address:
Melbourne, Australia
Editors:
Eunsol Choi, Minjoon Seo, Danqi Chen, Robin Jia, Jonathan Berant
Venue:
ACL
SIG:
Publisher:
Association for Computational Linguistics
Note:
Pages:
60–70
Language:
URL:
https://aclanthology.org/W18-2607
DOI:
10.18653/v1/W18-2607
Bibkey:
Cite (ACL):
Michael Boratko, Harshit Padigela, Divyendra Mikkilineni, Pritish Yuvraj, Rajarshi Das, Andrew McCallum, Maria Chang, Achille Fokoue-Nkoutche, Pavan Kapanipathi, Nicholas Mattei, Ryan Musa, Kartik Talamadupula, and Michael Witbrock. 2018. A Systematic Classification of Knowledge, Reasoning, and Context within the ARC Dataset. In Proceedings of the Workshop on Machine Reading for Question Answering, pages 60–70, Melbourne, Australia. Association for Computational Linguistics.
Cite (Informal):
A Systematic Classification of Knowledge, Reasoning, and Context within the ARC Dataset (Boratko et al., ACL 2018)
Copy Citation:
PDF:
https://aclanthology.org/W18-2607.pdf
Data
SQuADSearchQA