@inproceedings{pham-etal-2018-towards,
title = "Towards one-shot learning for rare-word translation with external experts",
author = "Pham, Ngoc-Quan and
Niehues, Jan and
Waibel, Alexander",
editor = "Birch, Alexandra and
Finch, Andrew and
Luong, Thang and
Neubig, Graham and
Oda, Yusuke",
booktitle = "Proceedings of the 2nd Workshop on Neural Machine Translation and Generation",
month = jul,
year = "2018",
address = "Melbourne, Australia",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/W18-2712/",
doi = "10.18653/v1/W18-2712",
pages = "100--109",
abstract = "Neural machine translation (NMT) has significantly improved the quality of automatic translation models. One of the main challenges in current systems is the translation of rare words. We present a generic approach to address this weakness by having external models annotate the training data as Experts, and control the model-expert interaction with a pointer network and reinforcement learning. Our experiments using phrase-based models to simulate Experts to complement neural machine translation models show that the model can be trained to copy the annotations into the output consistently. We demonstrate the benefit of our proposed framework in outof domain translation scenarios with only lexical resources, improving more than 1.0 BLEU point in both translation directions English-Spanish and German-English."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="pham-etal-2018-towards">
<titleInfo>
<title>Towards one-shot learning for rare-word translation with external experts</title>
</titleInfo>
<name type="personal">
<namePart type="given">Ngoc-Quan</namePart>
<namePart type="family">Pham</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jan</namePart>
<namePart type="family">Niehues</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alexander</namePart>
<namePart type="family">Waibel</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2018-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2nd Workshop on Neural Machine Translation and Generation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Alexandra</namePart>
<namePart type="family">Birch</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Andrew</namePart>
<namePart type="family">Finch</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Thang</namePart>
<namePart type="family">Luong</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Graham</namePart>
<namePart type="family">Neubig</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yusuke</namePart>
<namePart type="family">Oda</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Melbourne, Australia</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Neural machine translation (NMT) has significantly improved the quality of automatic translation models. One of the main challenges in current systems is the translation of rare words. We present a generic approach to address this weakness by having external models annotate the training data as Experts, and control the model-expert interaction with a pointer network and reinforcement learning. Our experiments using phrase-based models to simulate Experts to complement neural machine translation models show that the model can be trained to copy the annotations into the output consistently. We demonstrate the benefit of our proposed framework in outof domain translation scenarios with only lexical resources, improving more than 1.0 BLEU point in both translation directions English-Spanish and German-English.</abstract>
<identifier type="citekey">pham-etal-2018-towards</identifier>
<identifier type="doi">10.18653/v1/W18-2712</identifier>
<location>
<url>https://aclanthology.org/W18-2712/</url>
</location>
<part>
<date>2018-07</date>
<extent unit="page">
<start>100</start>
<end>109</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Towards one-shot learning for rare-word translation with external experts
%A Pham, Ngoc-Quan
%A Niehues, Jan
%A Waibel, Alexander
%Y Birch, Alexandra
%Y Finch, Andrew
%Y Luong, Thang
%Y Neubig, Graham
%Y Oda, Yusuke
%S Proceedings of the 2nd Workshop on Neural Machine Translation and Generation
%D 2018
%8 July
%I Association for Computational Linguistics
%C Melbourne, Australia
%F pham-etal-2018-towards
%X Neural machine translation (NMT) has significantly improved the quality of automatic translation models. One of the main challenges in current systems is the translation of rare words. We present a generic approach to address this weakness by having external models annotate the training data as Experts, and control the model-expert interaction with a pointer network and reinforcement learning. Our experiments using phrase-based models to simulate Experts to complement neural machine translation models show that the model can be trained to copy the annotations into the output consistently. We demonstrate the benefit of our proposed framework in outof domain translation scenarios with only lexical resources, improving more than 1.0 BLEU point in both translation directions English-Spanish and German-English.
%R 10.18653/v1/W18-2712
%U https://aclanthology.org/W18-2712/
%U https://doi.org/10.18653/v1/W18-2712
%P 100-109
Markdown (Informal)
[Towards one-shot learning for rare-word translation with external experts](https://aclanthology.org/W18-2712/) (Pham et al., NGT 2018)
ACL